ﻻ يوجد ملخص باللغة العربية
We define a proof system for exceptions which is close to the syntax for exceptions, in the sense that the exceptions do not appear explicitly in the type of any expression. This proof system is sound with respect to the intended denotational semantics of exceptions. With this inference system we prove several properties of exceptions.
In this paper we consider the two major computational effects of states and exceptions, from the point of view of diagrammatic logics. We get a surprising result: there exists a symmetry between these two effects, based on the well-known categorical
An algebraic method is used to study the semantics of exceptions in computer languages. The exceptions form a computational effect, in the sense that there is an apparent mismatch between the syntax of exceptions and their intended semantics. We solv
Exception handling is provided by most modern programming languages. It allows to deal with anomalous or exceptional events which require special processing. In computer algebra, exception handling is an efficient way to implement the dynamic evaluat
It is well established that equational algebraic theories, and the monads they generate, can be used to encode computational effects. An important insight of Power and Shkaravska is that comodels of an algebraic theory T -- i.e., models in the opposi
In this short note we study the semantics of two basic computational effects, exceptions and states, from a new point of view. In the handling of exceptions we dissociate the control from the elementary operation which recovers from the exception. In