ترغب بنشر مسار تعليمي؟ اضغط هنا

A duality between exceptions and states

117   0   0.0 ( 0 )
 نشر من قبل Dominique Duval
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this short note we study the semantics of two basic computational effects, exceptions and states, from a new point of view. In the handling of exceptions we dissociate the control from the elementary operation which recovers from the exception. In this way it becomes apparent that there is a duality, in the categorical sense, between exceptions and states.



قيم البحث

اقرأ أيضاً

In this paper we consider the two major computational effects of states and exceptions, from the point of view of diagrammatic logics. We get a surprising result: there exists a symmetry between these two effects, based on the well-known categorical duality between products and coproducts. More precisely, the lookup and update operations for states are respectively dual to the throw and catch operations for exceptions. This symmetry is deeply hidden in the programming languages; in order to unveil it, we start from the monoidal equational logic and we add progressively the logical features which are necessary for dealing with either effect. This approach gives rise to a new point of view on states and exceptions, which bypasses the problems due to the non-algebraicity of handling exceptions.
An algebraic method is used to study the semantics of exceptions in computer languages. The exceptions form a computational effect, in the sense that there is an apparent mismatch between the syntax of exceptions and their intended semantics. We solv e this apparent contradiction by efining a logic for exceptions with a proof system which is close to their syntax and where their intended semantics can be seen as a model. This requires a robust framework for logics and their morphisms, which is provided by categorical tools relying on adjunctions, fractions and limit sketches.
We define a proof system for exceptions which is close to the syntax for exceptions, in the sense that the exceptions do not appear explicitly in the type of any expression. This proof system is sound with respect to the intended denotational semanti cs of exceptions. With this inference system we prove several properties of exceptions.
Computational effects may often be interpreted in the Kleisli category of a monad or in the coKleisli category of a comonad. The duality between monads and comonads corresponds, in general, to a symmetry between construction and observation, for inst ance between raising an exception and looking up a state. Thanks to the properties of adjunction one may go one step further: the coKleisli-on-Kleisli category of a monad provides a kind of observation with respect to a given construction, while dually the Kleisli-on-coKleisli category of a comonad provides a kind of construction with respect to a given observation. In the previous examples this gives rise to catching an exception and updating a state. However, the interpretation of computational effects is usually based on a category which is not self-dual, like the category of sets. This leads to a breaking of the monad-comonad duality. For instance, in a distributive category the state effect has much better properties than the exception effect. This remark provides a novel point of view on the usual mechanism for handling exceptions. The aim of this paper is to build an equational semantics for handling exceptions based on the coKleisli-on-Kleisli category of the monad of exceptions. We focus on n-ary functions and conditionals. We propose a programmers language for exceptions and we prove that it has the required behaviour with respect to n-ary functions and conditionals.
Exception handling is provided by most modern programming languages. It allows to deal with anomalous or exceptional events which require special processing. In computer algebra, exception handling is an efficient way to implement the dynamic evaluat ion paradigm: for instance, in linear algebra, dynamic evaluation can be used for applying programs which have been written for matrices with coefficients in a field to matrices with coefficients in a ring. Thus, a proof system for computer algebra should include a treatement of exceptions, which must rely on a careful description of a semantics of exceptions. The categorical notion of monad can be used for formalizing the raising of exceptions: this has been proposed by Moggi and implemented in Haskell. In this paper, we provide a proof system for exceptions which involves both raising and handling, by extending Moggis approach. Moreover, the core part of this proof system is dual to a proof system for side effects in imperative languages, which relies on the categorical notion of comonad. Both proof systems are implemented in the Coq proof assistant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا