ﻻ يوجد ملخص باللغة العربية
In this paper we consider the two major computational effects of states and exceptions, from the point of view of diagrammatic logics. We get a surprising result: there exists a symmetry between these two effects, based on the well-known categorical duality between products and coproducts. More precisely, the lookup and update operations for states are respectively dual to the throw and catch operations for exceptions. This symmetry is deeply hidden in the programming languages; in order to unveil it, we start from the monoidal equational logic and we add progressively the logical features which are necessary for dealing with either effect. This approach gives rise to a new point of view on states and exceptions, which bypasses the problems due to the non-algebraicity of handling exceptions.
In this short note we study the semantics of two basic computational effects, exceptions and states, from a new point of view. In the handling of exceptions we dissociate the control from the elementary operation which recovers from the exception. In
We define a proof system for exceptions which is close to the syntax for exceptions, in the sense that the exceptions do not appear explicitly in the type of any expression. This proof system is sound with respect to the intended denotational semanti
An algebraic method is used to study the semantics of exceptions in computer languages. The exceptions form a computational effect, in the sense that there is an apparent mismatch between the syntax of exceptions and their intended semantics. We solv
In this short paper, using category theory, we argue that logical rules can be seen as fractions and logics as limit sketches.
This note is about using computational effects for scalability. With this method, the specification gets more and more complex while its semantics gets more and more correct. We show, from two fundamental examples, that it is possible to design a ded