ﻻ يوجد ملخص باللغة العربية
We introduce a new method for reducing phase noise in oscillators, thereby improving their frequency precision. The noise reduction device consists of a pair of coupled nonlinear resonating elements that are driven parametrically by the output of a conventional oscillator at a frequency close to the sum of the linear mode frequencies. Above the threshold for parametric response, the coupled resonators exhibit self-oscillation at an inherent frequency. We find operating points of the device for which this periodic signal is immune to frequency noise in the driving oscillator, providing a way to clean its phase noise. We present results for the effect of thermal noise to advance a broader understanding of the overall noise sensitivity and the fundamental operating limits.
For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common pha
In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristiv
Using a passive driven nonlinear optical fiber ring resonator, we report the experimental realization of dissipative polarization domain walls. The domain walls arise through a symmetry breaking bifurcation and consist of temporally localized structu
Exciton-polariton solitons are strongly nonlinear quasiparticles composed of coupled exciton-photon states due to the interaction of light with matter. In semiconductor microcavity systems such as semiconductor micro and nanowires, polaritons are cha
We study Saffman-Taylor flow in the presence of intermediate noise numerically by using both a boundary-integral approach as well as the Kadanoff-Liang modified Diffusion-Limited Aggregation model that incorporates surface tension and reduced noise.