ترغب بنشر مسار تعليمي؟ اضغط هنا

Saffman-Taylor Fingers at Intermediate Noise

73   0   0.0 ( 0 )
 نشر من قبل David A. Kessler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Saffman-Taylor flow in the presence of intermediate noise numerically by using both a boundary-integral approach as well as the Kadanoff-Liang modified Diffusion-Limited Aggregation model that incorporates surface tension and reduced noise. For little to no noise, both models result reproduce the well-known Saffman-Taylor finger. We compare both models in the region of intermediate noise where we get occasional tip-splitting events, focusing on the ensemble-average. We show that as the noise in the system is increased, the mean behavior in both models approaches the $cos^2(pi y/W)$ transverse density profile far behind the leading front. We also investigate how the noise scales and affects both models.



قيم البحث

اقرأ أيضاً

We introduce a new method for reducing phase noise in oscillators, thereby improving their frequency precision. The noise reduction device consists of a pair of coupled nonlinear resonating elements that are driven parametrically by the output of a c onventional oscillator at a frequency close to the sum of the linear mode frequencies. Above the threshold for parametric response, the coupled resonators exhibit self-oscillation at an inherent frequency. We find operating points of the device for which this periodic signal is immune to frequency noise in the driving oscillator, providing a way to clean its phase noise. We present results for the effect of thermal noise to advance a broader understanding of the overall noise sensitivity and the fundamental operating limits.
The effects of compressibility on Rayleigh-Taylor instability (RTI) are investigated by inspecting the interplay between thermodynamic and hydrodynamic non-equilibrium phenomena (TNE, HNE, respectively) via a discrete Boltzmann model (DBM). Two effec tive approaches are presented, one tracking the evolution of the emph{local} TNE effects and the other focussing on the evolution of the mean temperature of the fluid, to track the complex interfaces separating the bubble and the spike regions of the flow. It is found that, both the compressibility effects and the emph{global} TNE intensity show opposite trends in the initial and the later stages of the RTI. Compressibility delays the initial stage of RTI and accelerates the later stage. Meanwhile, the TNE characteristics are generally enhanced by the compressibility, especially in the later stage. The global or mean thermodynamic non-equilibrium indicators provide physical criteria to discriminate between the two stages of the RTI.
We show how access to sufficiently flexible trapping potentials could be exploited in the generation of three-dimensional atomic bright matter-wave solitons. Our proposal provides a route towards producing bright solitonic states with good fidelity, in contrast to, for example, a non-adiabatic sweeping of an applied magnetic field through a Feshbach resonance.
63 - M.T. Batchelor 1998
The surface width scaling of Eden A clusters grown from a single aggregate site on the square lattice is investigated as a function of the noise reduction parameter. A two-exponent scaling ansatz is introduced and used to fit the results from simulat ions covering the range from fully stochastic to the zero-noise limit.
The dynamics of membrane undulations inside a viscous solvent is governed by distinctive, anomalous, power laws. Inside a viscoelastic continuous medium these universal behaviors are modified by the specific bulk viscoelastic spectrum. Yet, in struct ured fluids the continuum limit is reached only beyond a characteristic correlation length. We study the crossover to this asymptotic bulk dynamics. The analysis relies on a recent generalization of the hydrodynamic interaction in structured fluids, which shows a slow spatial decay of the interaction toward the bulk limit. For membranes which are weakly coupled to the structured medium we find a wide crossover regime characterized by different, universal, dynamic power laws. We discuss various systems for which this behavior is relevant, and delineate the time regime over which it may be observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا