ﻻ يوجد ملخص باللغة العربية
For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common phase error and for the (modulation dependent) inter carrier interference are evaluated based upon Gaussian statistics for the laser phase noise. In the evaluation it is accounted for that the laser phase noise is filtered in the correlation signal detection. Numerical results are presented for OFDM systems with 4 and 16 PSK modulation, 200 OFDM bins and baud rate of 1 GS/s. It is found that about 225 km transmission is feasible for the coherent 4PSK-OFDM system over normal (G.652) fiber.
We present a comparative study of the influence of dispersion induced phase noise for CO-OFDM systems using Tx channel multiplexing and Rx matched filter (analogue hardware based); and FFT multiplexing/IFFT demultiplexing techniques (software based).
We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo{e}ve representation of the phase noise process to estimate the pha
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise
We introduce a new method for reducing phase noise in oscillators, thereby improving their frequency precision. The noise reduction device consists of a pair of coupled nonlinear resonating elements that are driven parametrically by the output of a c
This paper investigates artificial noise injection into the temporal and spatial dimensions of a legitimate wireless communication system to secure its transmissions from potential eavesdropping. We consider a multiple-input single-output (MISO) orth