ﻻ يوجد ملخص باللغة العربية
Recently, diffuse and extended sources in TeV gamma-rays as well as in X-rays have been detected in the direction of the Galactic globular cluster (GC) Terzan 5. Remarkably, this is among the brightest GCs detected in the GeV regime. The nature of both the TeV and the diffuse X-ray signal from Terzan 5 is not settled yet. These emissions most likely indicate the presence of several non-thermal radiation processes in addition to these giving rise to the GeV signal. The aim of this work is to search for diffuse X-ray emission from the GeV detected GCs M 62, NGC 6388, NGC 6541, M 28, M 80 and NGC 6139 to compare the obtained results with the signal detected from Terzan 5. This study will help to determine whether Terzan 5 stands out amongst other GC or whether a whole population of globular clusters feature similar properties. None of the six GCs show significant diffuse X-ray emission on similar scales as observed from Terzan 5 above the particle and diffuse galactic X-ray background components. The derived upper limits allow to assess the validity of different models that were discussed in the interpretation of the multi-wavelength data of Terzan 5. A scenario based on synchrotron emission from relativistic leptons provided by the millisecond pulsar population can not be securely rejected if a comparable magnetic field strength as in Terzan 5 is assumed for every GC. However, such a scenario seems to be unlikely for NGC 6388 and M 62. An inverse-Compton scenario relying on the presence of a putative GRB remnant with the same properties as the one proposed for Terzan 5 can be ruled out for all of the six GCs. Finally, the assumption that each GC hosts a source with the same luminosity as in Terzan 5 is ruled out for all GCs but NGC 6139. (abridged)
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton
Millisecond Pulsars are second most abundant source population discovered by the Fermi-LAT. They might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT, the IDGRB. Gamma-ray sources also contribute to the anis
The features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties a
Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for the gamma-ray pulsations from the direction of globular cluster M28 (NGC 6626). We report the discovery of a signal with the frequency con