ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray sources in Galactic globular clusters and old open clusters

210   0   0.0 ( 0 )
 نشر من قبل Maureen van den Berg
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties as well, determine to what extent we can expect a contribution to the cluster X-ray emission from low-mass X-ray binaries, millisecond pulsars, cataclysmic variables, and magnetically active binaries. Sensitive X-ray observations with XMM-Newton and certainly Chandra have yielded new insights into the nature of individual sources and the effects of dynamical encounters. They have also provided a new perspective on the collective X-ray properties of clusters, in which the X-ray emissivities of globular clusters and old open clusters can be compared to each other and to those of other environments. I will review our current understanding of cluster X-ray sources, focusing on star clusters older than about 1 Gyr, illustrated with recent results.

قيم البحث

اقرأ أيضاً

I review the current status of studies of the X-ray sources in Galactic old open clusters. Cataclysmic variables (CVs), magnetically-active binaries (ABs), and sub-subgiants (SSGs) dominate the X-ray emission of old open clusters. Surprisingly, the n umber of ABs detected inside the half-mass radius with Lx >~ 1e30 erg/s (0.3-7 keV) does not appear to scale with cluster mass. Comparison of the numbers of CVs, ABs, and SSGs per unit mass in old open and globular clusters shows that each of these classes is under-abundant in globulars. This suggests that dense environments suppress the frequency of even some of the hardest binaries.
A number of ultraluminous X-ray sources (ULXs) are physically associated with extragalactic globular clusters (GCs). We undertake a systematic X-ray analysis of eight of the brightest of these sources. We fit the spectra of the GC ULXs to single powe r law and single disk models. We find that the data never require that any of the sources change between a disk and a power law across successive observations. The GC ULXs best fit by a single disk show a bimodal distribution: they either have temperatures well below 0.5 keV, or variable temperatures ranging above 0.5 keV up to 2~keV. The GC ULXs with low kT have significant changes in luminosity but show little or no change in kT. By contrast, the sources with higher kT either change in both kT and $L_X$ together, or show no significant change in either parameter. Notably, the X-ray characteristics may be related to the optical properties of these ULXs, with the two lowest kT sources showing optical emission lines.
Globular clusters host a variety of lower-luminosity ($L_X<10^{35}$ erg s$^{-1}$) X-ray sources, including accreting neutron stars and black holes, millisecond pulsars, cataclysmic variables, and chromospherically active binaries. In this paper, we p rovide a comprehensive catalog of more than 1100 X-ray sources in 38 Galactic globular clusters observed by the Chandra X-ray Observatorys ACIS detector. The targets are selected to complement the MAVERIC surveys deep radio continuum maps of Galactic globular clusters. We perform photometry and spectral analysis for each source, determine a best-fit model, and assess the possibility of it being a foreground/background source based on its spectral properties and location in the cluster. We also provide basic assessments of variability. We discuss the distribution of X-ray binaries in globular clusters, their X-ray luminosity function, and carefully analyze systems with $L_X > 10^{33}$ erg s$^{-1}$. Among these moderately bright systems, we discover a new source in NGC 6539 that may be a candidate accreting stellar-mass black hole or a transitional millisecond pulsar. We show that quiescent neutron star LMXBs in globular clusters may spend ~2% of their lifetimes as transitional millisecond pulsars in their active ($L_X>10^{33}$ erg s$^{-1}$) state. Finally, we identify a substantial under-abundance of bright ($L_X>10^{33}$ erg s$^{-1}$) intermediate polars in globular clusters compared to the Galactic field, in contrast with the literature of the past two decades.
We have identified three ultraluminous X-ray sources (ULXs) hosted by globular clusters (GCs) within NGC 1316s stellar system. These discoveries bring the total number of known ULXs in GCs up to 20. We find that the X-ray spectra of the three new sou rces do not deviate from the established pattern of spectral behaviour of the other known GC ULXs. The consistency of the X-ray spectral behaviour for these sources points to multiple paths of formation and evolution mechanisms for these rare and unique sources. Using the now larger sample of GC ULXs, we compare the optical properties of the entire known population of GC ULXs to other GCs across five galaxies and find that the properties of clusters that host ULXs are quite different from the typical clusters. Lastly, any trend of GC ULXs being preferentially hosted by metal-rich clusters is not strongly significant in this sample.
We present a new X-ray study of NGC188, one of the oldest open clusters known in our Galaxy (7 Gyr). Our observation with the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in NGC188. We detect 84 source s down to a luminosity of Lx ~ 4e29 erg/s (0.3-7 keV), of which 73 are within the half-mass radius rh. Of the 60 sources inside rh with more than 5 counts, we estimate that ~38 are background sources. We detected 55 new sources, and confirmed 29 sources previously detected by ROSAT and/or XMM-Newton. A total of 13 sources detected are cluster members, and 7 of these are new detections: four active binaries, two blue straggler stars (BSSs), and, surprisingly, an apparently single cluster member on the main sequence (CX33/WOCS5639). One of the BSSs detected (CX84/WOCS5379) is intriguing as its X-ray luminosity cannot be explained by its currently understood configuration as a BSS/white-dwarf binary in an eccentric orbit of ~120 days. Its X-ray detection, combined with reports of short-period optical variability, suggests the presence of a close binary, which would make this BSS system a hierarchical multiple. We also classify one source as a new cataclysmic-variable candidate; it is identified with a known short-period optical variable, whose membership to NGC188 is unknown. We have compared the X-ray emissivity of NGC188 with those of other old Galactic open clusters. Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than other old stellar populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا