ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for pulsed gamma-ray emission from globular cluster M28

142   0   0.0 ( 0 )
 نشر من قبل Chung Yue Hui David
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. H. K. Wu




اسأل ChatGPT حول البحث

Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for the gamma-ray pulsations from the direction of globular cluster M28 (NGC 6626). We report the discovery of a signal with the frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statisic (TS) of 28.8 is attained which corresponds to a chance probability of ~1e-5 (4.3-sigma detection). With a phase-resolved analysis, the pulsed component is found to contribute ~25% of the total observed gamma-ray emission from the cluster. On the other hand, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged for further investigating this periodic signal candidate.



قيم البحث

اقرأ أيضاً

121 - P. Eger , C. van Eldik 2013
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. GCs could also constitute a new class of sources in the very-high-energy (VHE, E>100 GeV) gamma-ray regime, judging from the recent detection of emission from the direction of Terzan 5 with the H.E.S.S. telescope array. To search for VHE gamma-ray sources associated with other GCs, and to put constraints on leptonic emission models, we systematically analyzed the observations towards 15 GCs taken with H.E.S.S. We searched for individual sources of VHE gamma-rays from each GC in our sample and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the source of emission from Terzan 5, we calculated the expected gamma-ray flux for each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant emission from any of the 15 GCs. The obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC 6388 and NGC 7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. These stellar clusters could also constitute a new class of sources in the very-high-energy (VHE, E>100 GeV) gamma-ray regime, judging from the recent detection of a signal from the direction of Terzan 5 with the H.E.S.S. telescope array. We searched for point-like and extended VHE gamma-ray emission from 15 GCs serendipitously covered by H.E.S.S observations and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the origin of the VHE gamma-ray signal from the direction of Terzan 5, we calculated the expected gamma-ray flux from each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant VHE gamma-ray emission from any of the 15 GCs in either of the two analyses. Given the uncertainties related to the parameter determinations, the obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC 6388 and NGC 7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic scaling model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
We present the results of a search for pulsed TeV emission from the Crab pulsar using the Whipple Observatorys 10 m gamma-ray telescope. The direction of the Crab pulsar was observed for a total of 73.4 hours between 1994 November and 1997 March. Dur ing this period the Whipple 10 m telescope was operated at its lowest energy threshold to date. Spectral analysis techniques were applied to search for the presence of a gamma-ray signal from the Crab pulsar over the energy band 250 GeV to 4 TeV. We do not see any evidence of the 33 ms pulsations present in other energy bands from the Crab pulsar. The 99.9% confidence level upper limit for pulsed emission above 250 GeV is derived to be 4.8x10^-12 cm^-2 s^-1 or <3% of the steady flux from the Crab Nebula. These results imply a sharp cut-off of the power-law spectrum seen by the EGRET instrument on the Compton Gamma-Ray Observatory. If the cut-off is exponential, it must begin at 60 GeV or lower to accommodate these upper limits.
47 Tuc was the first globular cluster observed to be $gamma$-ray bright, with the $gamma$-rays being attributed to a population of unresolved millisecond pulsars (MSPs). Recent kinematic data, combined with detailed simulations, appears to be consist ent with the presence of an intermediate mass black hole (IMBH) at the centre of 47 Tuc. Building upon this, we analyse 9 years of textit{Fermi}-LAT observations to study the spectral properties of 47 Tuc with unprecedented accuracy and sensitivity. This 9-year $gamma$-ray spectrum shows that 47 Tucs $gamma$-ray flux cannot be explained by MSPs alone, due to a systematic discrepancy between the predicted and observed flux. Rather, we find a significant preference (TS $=40$) for describing 47 Tucs spectrum with a two source population model, consisting of an ensemble of MSPs and annihilating dark matter (DM) with an enhanced density around the IMBH, when compared to an MSP-only explanation. The best-fit DM mass of 34 GeV is essentially the same as the best-fit DM explanation for the Galactic centre excess when assuming DM annihilation into $bbar{b}$ quarks. Our work constitutes the first possible evidence of dark matter within a globular cluster.
Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of $gamma$-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential $gamma$-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into $boverline{b}$, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for $m_{mathrm{DM}}lesssim100,mathrm{GeV}$. In a more optimistic scenario, we exclude $langle sigma v ranglesim3times10^{-26},mathrm{cm^{3},s^{-1}}$ for $m_{mathrm{DM}}lesssim40,mathrm{GeV}$ for the same channel. Finally, we derive upper limits on the $gamma$-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than $sim6%$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا