ﻻ يوجد ملخص باللغة العربية
Conceptual designs of a superconducting dipole magnet for a Storage Ring of a Muon Collider with a 1.5 TeV center of mass (c.o.m.) energy and an average luminosity of 10 34 cm-2s-1 are presented. In contrast to proton machines, the dipoles for the Muon Collider should be able to handle ~0.5 kW/m of dynamic heat load from the muon beam decays. The magnets are based on Nb3Sn superconductor and designed to provide an operating field of 10 T in the 20-mm aperture with the critical current margin required for reliable machine operation. The magnet cross-sections were optimized to achieve the best possible field quality in the aperture occupied by beams. The developed mechanical structures provide adequate coil prestress and support at the maximum level of Lorentz forces in the coil. Magnet parameters are reported and compared with the requirements.
Conceptual designs of superconducting magnets for the storage ring of a Muon Collider with a 1.5 TeV c.o.m. energy and an average luminosity of 10 34 cm-2s-1 are presented. All magnets are based on Nb3Sn superconductor and designed to provide an adeq
The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the n
Muon collider is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 1035/cm2/s range the collider lattice design must satisfy a number of stringent requirements, such as low beta at IP ({bet
The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. In this paper a layout of a positron driven muon source known as the Low EMitt
Muon Collider (MC) - proposed by G. I. Budker and A. N. Skrinsky a few decades ago - is now considered as the most exciting option for the energy frontier machine in the post-LHC era. A national Muon Accelerator Program (MAP) is being formed in the U