ﻻ يوجد ملخص باللغة العربية
The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. In this paper a layout of a positron driven muon source known as the Low EMittance Muon Accelerator (LEMMA) concept is presented. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven to a multi-target system, to produce muon pairs at threshold. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition (PEDD) on the targets. Muons produced in the multi-target system will then be accumulated before acceleration and injection in the collider. A multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.
A complete scheme for production, cooling, acceleration, and ring for a 1.5 TeV center of mass muon collider is presented, together with parameters for two higher energy machines. The schemes starts with the front end of a proposed neutrino factory t
Muon collider detector design and interaction region optimization are strongly correlated by the beam-induced background that finally determines the detector performance. Therefore, it is crucial to be able to study and optimize both of them simultan
The investigation of the energy frontier in physics requires novel concepts for future colliders. The idea of a muon collider is very appealing since it would allow to study particle collisions at up to tens of TeV energy, while offering a cleaner ex
A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cu
Muon Collider (MC) - proposed by G. I. Budker and A. N. Skrinsky a few decades ago - is now considered as the most exciting option for the energy frontier machine in the post-LHC era. A national Muon Accelerator Program (MAP) is being formed in the U