ﻻ يوجد ملخص باللغة العربية
Muon Collider (MC) - proposed by G. I. Budker and A. N. Skrinsky a few decades ago - is now considered as the most exciting option for the energy frontier machine in the post-LHC era. A national Muon Accelerator Program (MAP) is being formed in the USA with the ultimate goal of building a MC at the Fermilab site with c.o.m. energy in the range 1.5-3 TeV and luminosity of ~1-5 times 10^{34} cm^{-2}s^{-1}1. As the first step on the way to MC it envisages construction of a Neutrino Factory (NF) for high-precision neutrino experiments. The baseline scheme of the NF-MC complex is presented and possible options for its main components are discussed.
Design of a muon collider interaction region (IR) presents a number of challenges arising from low {beta}* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets an
Design of a muon collider interaction region (IR) presents a number of challenges arising from low {beta} * < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets a
We discuss a preliminary design for a high luminosity 4 TeV center of mass $mu^+,mu^-$ collider ring.
Muon collider is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 1035/cm2/s range the collider lattice design must satisfy a number of stringent requirements, such as low beta at IP ({bet
One of the key systems of a Muon Collider (MC) - seen as the most exciting option for the energy frontier machine in the post-LHC era - is its interaction region (IR). Designs of its optics, magnets and machine-detector interface are strongly interla