ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon Collider design status

141   0   0.0 ( 0 )
 نشر من قبل Yuri Alexahin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. Alexahin




اسأل ChatGPT حول البحث

Muon Collider (MC) - proposed by G. I. Budker and A. N. Skrinsky a few decades ago - is now considered as the most exciting option for the energy frontier machine in the post-LHC era. A national Muon Accelerator Program (MAP) is being formed in the USA with the ultimate goal of building a MC at the Fermilab site with c.o.m. energy in the range 1.5-3 TeV and luminosity of ~1-5 times 10^{34} cm^{-2}s^{-1}1. As the first step on the way to MC it envisages construction of a Neutrino Factory (NF) for high-precision neutrino experiments. The baseline scheme of the NF-MC complex is presented and possible options for its main components are discussed.


قيم البحث

اقرأ أيضاً

Design of a muon collider interaction region (IR) presents a number of challenges arising from low {beta}* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets an d collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV c.o.m. muon collider IR is presented. It can provide an average luminosity of 1034 cm-2s-1 with an adequate protection of magnet and detector components.
Design of a muon collider interaction region (IR) presents a number of challenges arising from low {beta} * < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets a nd collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV c.o.m. muon collider IR is presented. It can provide an average luminosity of 1034 cm-2s-1 with an adequate protection of magnet and detector components.
56 - A. Garren 1996
We discuss a preliminary design for a high luminosity 4 TeV center of mass $mu^+,mu^-$ collider ring.
Muon collider is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 1035/cm2/s range the collider lattice design must satisfy a number of stringent requirements, such as low beta at IP ({bet a}* < 1 cm), large momentum acceptance and dynamic aperture and small value of the momentum compaction factor. Here we present a particular solution for the interaction region optics whose distinctive feature is a three-sextupole local chromatic correction scheme. Together with a new flexible momentum compaction arc cell design this scheme allows to satisfy all the above-mentioned requirements and is relatively insensitive to the beam-beam effect.
One of the key systems of a Muon Collider (MC) - seen as the most exciting option for the energy frontier machine in the post-LHC era - is its interaction region (IR). Designs of its optics, magnets and machine-detector interface are strongly interla ced and iterative. As a result of recent comprehensive studies, consistent solutions for the 1.5-TeV c.o.m. MC IR have been found and are described here. To provide the required momentum acceptance, dynamic aperture and chromaticity, an innovative approach was used for the IR optics. Conceptual designs of large-aperture high-field dipole and high-gradient quadrupole magnets based on Nb3Sn superconductor were developed and analyzed in terms of the operating margin, field quality, mechanics, coil cooling and quench protection. Shadow masks in the interconnect regions and liners inside the magnets are used to mitigate the unprecedented dynamic heat deposition due to muon decays (~0.5 kW/m). It is shown that an appropriately designed machine-detector interface (MDI) with sophisticated shielding in the detector has a potential to substantially suppress the background rates in the MC detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا