ﻻ يوجد ملخص باللغة العربية
Transport properties of GaAs/{delta}<Mn>/GaAs/IntimesGa1-timesAs/GaAs structures containing InxGa1-xAs (times {approx} 0.2) quantum well (QW) and Mn delta layer (DL) with relatively high, about one Mn monolayer (ML) content, are studied. In these structures DL is separated from QW by GaAs spacer with the thickness ds = 2-5 nm. All structures possess a dielectric character of conductivity and demonstrate a maximum in the resistance temperature dependence Rxx(T) at the temperature {approx} 46K which is usually associated with the Curie temperature Tc of ferromagnetic (FM) transition in DL. However, it is found that the Hall effect concentration of holes pH in QW does not decrease below TC as one ordinary expects in similar systems. On the contrary, the dependence pH(T) experiences a minimum at T = 80-100 K depending on the spacer thickness, then increases at low temperatures more strongly than ds is smaller and reaches a giant value pH = (1-2)cdot10^13 cm^(-2). Obtained results are interpreted in the terms of magnetic proximity effect of DL on QW, leading to induce spin polarization of the holes in QW. Strong structural and magnetic disorder in DL and QW, leading to the phase segregation in them is taken into consideration. The high pH value is explained as a result of compensation of the positive sign normal Hall effect component by the negative sign anomalous Hall effect component.
We report results of investigations of structural and transport properties of GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn layer, separated from the QW by a 3 nm thick spacer. The structure has hole mobility of about 2000
Recent experiments on resonant tunneling structures comprising (Ga,Mn)As quantum wells [Ohya et al., Nature Physics 7, 342 (2011)] have evoked a strong debate regarding their interpretation as resonant tunneling features and the near absences of ferr
We present here the electronic structure and optical properties of InGaAs quantum wells with barrier doped with Manganese. We calculated the electronic states and optical emission within the envelope function and effective mass approximations using t
We determine the effective total spin $J$ of local moments formed from acceptor states bound to Mn ions in GaAs by evaluating their magnetic Chern numbers. We find that when individual Mn atoms are close to the sample surface, the total spin changes
The local density of states of Mn-Mn pairs in GaAs is mapped with cross-sectional scanning tunneling microscopy and compared with theoretical calculations based on envelope-function and tight-binding models. These measurements and calculations show t