ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder effects on resonant tunneling transport in GaAs/(Ga,Mn)As heterostructures

99   0   0.0 ( 0 )
 نشر من قبل Christian Ertler
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments on resonant tunneling structures comprising (Ga,Mn)As quantum wells [Ohya et al., Nature Physics 7, 342 (2011)] have evoked a strong debate regarding their interpretation as resonant tunneling features and the near absences of ferromagnetic order observed in these structures. Here, we present a related theoretical study of a GaAs/(Ga,Mn)As double barrier structure based on a Greens function approach, studying the self-consistent interplay between ferromagnetic order, structural defects (disorder), and the hole tunnel current under conditions similar to those in experiment. We show that disorder has a strong influence on the current-voltage characteristics in efficiently reducing or even washing out negative differential conductance, offering an explanation for the experimental results. We find that for the Be lead doping levels used in experiment the resulting spin density polarization in the quantum well is too small to produce a sizable exchange splitting.



قيم البحث

اقرأ أيضاً

We report the observation of tunneling anisotropic magnetothermopower, a voltage response to a temperature difference across an interface between a normal and a magnetic semiconductor. The resulting voltage is related to the energy derivative of the density of states in the magnetic material, and thus has a strongly anisotropic response to the direction of magnetization in the material. The effect will have relevance to the operation of semiconductor spintronic devices, and may indeed already play a role in correctly interpreting the details of some earlier spin injection studies.
Several models of thermionic energy nanoconverters have been proposed to study the transport phenomena that take place in electronic devices. For example, in resonant tunneling junctions those phenomena are manifested through the thermoelectric effec ts. The coupling between the electron flux and the heat flux in this type of semiconductor heterostructures, not only allows to obtain transport coefficients (electrical and thermal conductivities, and a Seebeck--like and Peltier--like coefficients), but also to study its operation as a thermionic generator or as a refrigerator within the context of irreversible thermodynamics. The existence of the characteristic steady states that can be reached by any linear energy converter led us to characterize a family of Seebeck--like coefficients, as well as establish bounds for the values of a kind of figure of merit $(Tz_{D,I})$, both associated with the well-known operating regimes: minimum dissipation function, maximum power output, maximum efficiency and maximum compromise function. By taking as example an $Al_{x}GaAs/GaAs$ junction, we found that the transport coefficients depend strongly on temperature and the conduction band height, which can be modulated according to the selected operation mode.
The large tunneling anisotropic magneto-resistance of a single $p^{++}$-(Ga,Mn)As/$n^{+}$-GaAs Zener-Esaki diode is evidenced in a perpendicular magnetic field over a large temperature and voltage range. Under an applied bias, the tunnel junction tra nsparency is modified, allowing to continuously tune anisotropic transport properties between the tunneling and the ohmic regimes. Furthermore, an asymmetric bias-dependence of the anisotropic tunneling magneto-resistance is also observed: a reverse bias highlights the full (Ga,Mn)As valence band states contribution, whereas a forward bias only probes part of the density of states and reveals opposite contributions from two subbands.
243 - K. Pappert , C. Gould , M. Sawicki 2008
This paper discusses transport methods for the investigation of the (Ga,Mn)As magnetic anisotropy. Typical magnetoresistance behaviour for different anisotropy types is discussed, focusing on an in depth discussion of the anisotropy fingerprint techn ique and extending it to layers with primarily uniaxial magnetic anisotropy. We find that in all (Ga,Mn)As films studied, three anisotropy components are always present. The primary biaxial along ([100] and [010]) along with both uniaxial components along the [110] and [010] crystal directions which are often reported separately. Various fingerprints of typical (Ga,Mn)As transport samples at 4 K are included to illustrate the variation of the relative strength of these anisotropy terms. We further investigate the temperature dependence of the magnetic anisotropy and the domain wall nucleation energy with the help of the fingerprint method.
Transport properties of GaAs/{delta}<Mn>/GaAs/IntimesGa1-timesAs/GaAs structures containing InxGa1-xAs (times {approx} 0.2) quantum well (QW) and Mn delta layer (DL) with relatively high, about one Mn monolayer (ML) content, are studied. In these str uctures DL is separated from QW by GaAs spacer with the thickness ds = 2-5 nm. All structures possess a dielectric character of conductivity and demonstrate a maximum in the resistance temperature dependence Rxx(T) at the temperature {approx} 46K which is usually associated with the Curie temperature Tc of ferromagnetic (FM) transition in DL. However, it is found that the Hall effect concentration of holes pH in QW does not decrease below TC as one ordinary expects in similar systems. On the contrary, the dependence pH(T) experiences a minimum at T = 80-100 K depending on the spacer thickness, then increases at low temperatures more strongly than ds is smaller and reaches a giant value pH = (1-2)cdot10^13 cm^(-2). Obtained results are interpreted in the terms of magnetic proximity effect of DL on QW, leading to induce spin polarization of the holes in QW. Strong structural and magnetic disorder in DL and QW, leading to the phase segregation in them is taken into consideration. The high pH value is explained as a result of compensation of the positive sign normal Hall effect component by the negative sign anomalous Hall effect component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا