ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic and optical properties of InGaAs quantum wells with Mn-delta-doping GaAs barriers

103   0   0.0 ( 0 )
 نشر من قبل Udson C. Mendes
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here the electronic structure and optical properties of InGaAs quantum wells with barrier doped with Manganese. We calculated the electronic states and optical emission within the envelope function and effective mass approximations using the spin-density functional theory in the presence of an external magnetic field. We observe magneto-oscillations of the Landau levels at low-magnetic fields (B < 5 T) that are dominated by the magnetic interaction between holes spin and Mn spin, while at high magnetic fields the spin-polarization of the hole gas is the dominant effect. Our results also show that a gate voltage alter significantly the magneto-oscillations of the emission energy and may be an external control parameter for the magnetic properties of the system. Finally, we discuss the influence of the Landau Levels oscillations in the emission spectra and compare with available experimental.

قيم البحث

اقرأ أيضاً

We report results of investigations of structural and transport properties of GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn layer, separated from the QW by a 3 nm thick spacer. The structure has hole mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher than in known ferromagnetic two-dimensional structures. The analysis of the electro-physical properties of these systems is based on detailed study of their structure by means of high-resolution X-ray diffractometry and glancing-incidence reflection, which allow us to restore the depth profiles of structural characteristics of the QWs and thin Mn containing layers. These investigations show absence of Mn atoms inside the QWs. The quality of the structures was also characterized by photoluminescence spectra from the QWs. Transport properties reveal features inherent to ferromagnetic systems: a specific maximum in the temperature dependence of the resistance and the anomalous Hall effect (AHE) observed in samples with both metallic and activated types of conductivity up to ~100 K. AHE is most pronounced in the temperature range where the resistance maximum is observed, and decreases with decreasing temperature. The results are discussed in terms of interaction of 2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations related to random distribution of Mn atoms. The AHE values are compared with calculations taking into account its intrinsic mechanism in ferromagnetic systems.
InGaAs Quantum Dots embedded in GaAs barriers, grown in inverted tetrahedral recesses of 7 {mu}m edge, have showed interesting characteristics in terms of uniformity and spectral narrowness of the emission. In this paper we present a study on the fin e structure splitting (FSS). The investigation of about 40 single quantum dots revealed two main points: (1) the values of this parameter are very similar from dot to dot, proving again the uniformity of Pyramidal QD properties, (2) there is a little chance, in the sample investigated, to find a dot with natural zero splitting, but the values found (the mean being 13 {mu}eV) should always guarantee the capability of restoring the degeneracy with some corrective technique (e.g. application of a small magnetic field).
Photoluminescence (PL) and reflectivity spectra of a high-quality InGaAs/GaAs quantum well structure reveal a series of ultra-narrow peaks attributed to the quantum confined exciton states. The intensity of these peaks decreases as a function of temp erature, while the linewidths demonstrate a complex and peculiar behavior. At low pumping the widths of all peaks remain quite narrow ($< 0.1$ meV) in the whole temperature range studied, $4 - 30K$. At the stronger pumping, the linewidth first increases and than drops down with the temperature rise. Pump-probe experiments show two characteristic time scales in the exciton decay, $< 10$ps and $15 - 45ns$, respectively. We interpret all these data by an interplay between the exciton recombination within the light cone, the exciton relaxation from a non-radiative reservoir to the light cone, and the thermal dissociation of the non-radiative excitons. The broadening of the low energy exciton lines is governed by the radiative recombination and scattering with reservoir excitons while for the higher energy states the linewidths are also dependent on the acoustic phonon relaxation processes.
65 - P. Cendula , S. Kiravittaya , 2011
The authors theoretically investigate quantum confinement and transition energies in quantum wells (QWs) asymmetrically positioned in wrinkled nanomembranes. Calculations reveal that the wrinkle profile induces both blue- and redshifts depending on t he lateral position of the QW probed. Relevant radiative transistions include the ground state of the electron (hole) and excited states of the hole (electron). Energy shifts as well as stretchability of the structure are studied as a function of wrinkle amplitude and period. Large tunable bandwidths of up to 70 nm are predicted for highly asymmetric wrinkled QWs.
In the present work, we were able to identify and characterize a new source of in-plane optical anisotropies (IOAs) occurring in asymmetric DQWs; namely a reduction of the symmetry from $D_{2d}$ to $C_{2v}$ as imposed by asymmetry along the growth di rection. We report on reflectance anisotropy spectroscopy (RAS) of double GaAs quantum wells (DQWs) structures coupled by a thin ($<2$ nm) tunneling barrier. Two groups of DQWs systems were studied: one where both QWs have the same thickness (symmetric DQW) and another one where they have different thicknesses (asymmetric DQW). RAS measures the IOAs arising from the intermixing of the heavy- and light- holes in the valence band when the symmetry of the DQW system is lowered from $D_{2d}$ to $C_{2v}$. If the DQW is symmetric, residual IOAs stem from the asymmetry of the QW interfaces; for instance, associated to Ga segregation into the AlGaAs layer during the epitaxial growth process. In the case of an asymmetric DQW with QWs with different thicknesses, the AlGaAs layers (that are sources of anisotropies) are not distributed symmetrically at both sides of the tunneling barrier. Thus, the system losses its inversion symmetry yielding an increase of the RAS strength. The RAS line shapes were compared with reflectance spectra in order to assess the heavy- and light- hole mixing induced by the symmetry breakdown. The energies of the optical transitions were calculated by numerically solving the one-dimensional Schrodinger equation using a finite-differences method. Our results are useful for interpretation of the transitions occurring in both, symmetric and asymmetric DQWs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا