ﻻ يوجد ملخص باللغة العربية
To achieve the extremely high luminosity for colliding electron-positron beams at the future International Linear Collider (ILC) an undulator-based source with about 230 meters helical undulator and a thin titanium-alloy target rim rotated with tangential velocity of about 100 meters per second are foreseen. The very high density of heat deposited in the target has to be analyzed carefully. The energy deposited by the photon beam in the target has been calculated in FLUKA. The resulting stress in the target material after one bunch train has been simulated in ANSYS.
The use of polarized beams enhance the possibility of the precision measurements at the International Linear Collider (ILC). In order to preserve the degree of polarization during beam transport spin rotators are included in the current TDR ILC Latti
For the planned International Linear Collider it is intended to have both -- electron and positron -- beams polarised. This offers a great benefit for many physics studies, but also provides a challenge for the engineering of the machine. A polarised
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the pol
The goal of this study is to evaluate the impact of the latest ILC beam parameters at the Interaction Point (IP), as specified in the 2013 ILC Technical Design Report (TDR), on beam losses in the extraction line. The previous beam loss evaluation was
Since the undulator wall is being bombarded by photon produced in the ILC helical undulator, masks were installed inside the undulator to protect the superconducting undulator as well as the vacuum. The photon energy spectrum was used to calculate th