ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized positrons for the ILC - update on simulations

107   0   0.0 ( 0 )
 نشر من قبل Andriy Ushakov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Ushakov




اسأل ChatGPT حول البحث

To achieve the extremely high luminosity for colliding electron-positron beams at the future International Linear Collider (ILC) an undulator-based source with about 230 meters helical undulator and a thin titanium-alloy target rim rotated with tangential velocity of about 100 meters per second are foreseen. The very high density of heat deposited in the target has to be analyzed carefully. The energy deposited by the photon beam in the target has been calculated in FLUKA. The resulting stress in the target material after one bunch train has been simulated in ANSYS.



قيم البحث

اقرأ أيضاً

The use of polarized beams enhance the possibility of the precision measurements at the International Linear Collider (ILC). In order to preserve the degree of polarization during beam transport spin rotators are included in the current TDR ILC Latti ce. In this report some advantages of using a combined spin rotator/spin flipper are discussed. A few possible lattice designs of spin flipper developed at DESY in 2012 are presented.
201 - Andreas Schalicke 2007
For the planned International Linear Collider it is intended to have both -- electron and positron -- beams polarised. This offers a great benefit for many physics studies, but also provides a challenge for the engineering of the machine. A polarised positron source that meets the machine parameters is topic of current design studies and prototype experiments.
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the pol arized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/$c$, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.
The goal of this study is to evaluate the impact of the latest ILC beam parameters at the Interaction Point (IP), as specified in the 2013 ILC Technical Design Report (TDR), on beam losses in the extraction line. The previous beam loss evaluation was based on the parameters specified in the 2007 ILC Reference Design Report (RDR). The results of this study are compared to the results obtained in the past for the ``nominal and the ``low power (low-P) parameter options of the RDR. The initial disrupted beam distribution at IP was generated using Guinea-Pig code, and the beam losses were obtained in tracking simulations using DIMAD. The study is performed for 500 GeV center-of-mass beam energy and the extraction line optics corresponding to the latest final focus optics with L* = 4.5 m, with and without detector solenoid.
55 - Khaled Alharbi 2018
Since the undulator wall is being bombarded by photon produced in the ILC helical undulator, masks were installed inside the undulator to protect the superconducting undulator as well as the vacuum. The photon energy spectrum was used to calculate th e incident power. HUSR software was used to simulate the photon energy spectrum per meter inside the undulator. The influence of adding masks inside the undulator on the photon polarisation and energy spectrum was also studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا