ترغب بنشر مسار تعليمي؟ اضغط هنا

The Energy Deposition on the ILC Realistic Undulator Wall

56   0   0.0 ( 0 )
 نشر من قبل Khaled Alharbi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Khaled Alharbi




اسأل ChatGPT حول البحث

Since the undulator wall is being bombarded by photon produced in the ILC helical undulator, masks were installed inside the undulator to protect the superconducting undulator as well as the vacuum. The photon energy spectrum was used to calculate the incident power. HUSR software was used to simulate the photon energy spectrum per meter inside the undulator. The influence of adding masks inside the undulator on the photon polarisation and energy spectrum was also studied.

قيم البحث

اقرأ أيضاً

62 - Khaled Alharbi 2020
In the future, International Linear Collider (ILC), a helical undulator based polarized positron source is expected to be chosen. A high energy electron beam passes through a superconducting helical undulator in order to create circularly polarized p hotons which will be directed to a conversion target, the result of which, will be electron-positron pairs. The resulting positron beam is longitudinally polarized. In order to produce the required number of positrons in ILC250 the full undulator length is needed. Since the photons are created with an opening angle and traveling through a 320 m long undulator, it is expected that the superconducting undulator vacuum will be hit by the photons. Photon masks are needed to be inserted in the undulator line to keep the power deposition in the vacuum below the acceptable limit which is 1W/m. A detailed study of the power deposition in the vacuum and masks is needed in order to design the photon masks. This paper describes the power deposition in the undulator vacuum due to secondary particles assuming an ideal undulator. In addition, the mask model is proposed.
76 - Khaled Alharbi 2019
The positron source of the International Linear Collider is based on a superconducting helical undulator passed by the high-energy electron beam to generate photons which hit a conversion target. Since the photons are circularly polarized the resulti ng positron beam is polarized. At ILC250, the full undulator is needed to produce the required number of positrons. To keep the power deposition in the undulator walls below the acceptable limit of 1W/m, photon masks must be inserted in the undulator line. The photon mask design requires a detailed study of the power deposition in the walls and masks. This paper describes the power deposition in the undulator wall due to synchrotron radiation.
The design of the positron source for the International Linear Collider (ILC) is still under consideration. The baseline design plans to use the electron beam for the positron production before it goes to the IP. The high-energy electrons pass a long helical undulator and generate an intense circularly polarized photon beam which hits a thin conversion target to produce $e^+e^-$ pairs. The resulting positron beam is longitudinally polarized which provides an important benefit for precision physics analyses. In this paper the status of the design studies is presented with focus on ILC250. In particular, the target design and cooling as well as issues of the optical matching device are important for the positron yield. Some possibilities to optimize the system are discussed.
67 - Sabine Riemann 2020
The design of the positron source for the International Linear Collider (ILC) is still under discussion. The baseline design plans to use the high-energy electron beam for the positron production before it goes to the IP. The electrons pass a long he lical undulator and generate an intense circularly polarized photon beam which hits a thin conversion target to produce $e^+e^-$ pairs. The resulting positron beam is longitudinally polarized which provides an important benefit for precision physics analyses at the ILC. In this paper the status of the positron target design studies is presented. Focus is the positron yield for center-of-mass energies of 250 GeV and also the Z peak. Possibilities to improve the positron collection system and thus to increase the positron yield are discussed.
113 - D. Kafer , J. List , K. Monig 2008
This note summarizes the results of the Workshop on Polarisation and Beam Energy Measurements at the ILC, held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (i) physics requirements, (ii) polarised sources and low energy pol arimetry, (iii) BDS polarimeters, (iv) BDS energy spectrometers, and (v) physics-based measurements of beam polarisation and beam energy from collider data. Discussions focused on the current ILC baseline programme as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarisation of P_e- >~ 80% and positron polarisation of P_e+ >~ 30% are part of the baseline configuration of the machine. Energy and polarisation measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا