ﻻ يوجد ملخص باللغة العربية
Let $(M,g_1)$ be a complete $d$-dimensional Riemannian manifold for $d > 1$. Let $mathcal X_n$ be a set of $n$ sample points in $M$ drawn randomly from a smooth Lebesgue density $f$ supported in $M$. Let $x,y$ be two points in $M$. We prove that the normalized length of the power-weighted shortest path between $x, y$ through $mathcal X_n$ converges almost surely to a constant multiple of the Riemannian distance between $x,y$ under the metric tensor $g_p = f^{2(1-p)/d} g_1$, where $p > 1$ is the power parameter.
Consider a random regular graph with degree $d$ and of size $n$. Assign to each edge an i.i.d. exponential random variable with mean one. In this paper we establish a precise asymptotic expression for the maximum number of edges on the shortest-weigh
Given a `cost functional $F$ on paths $gamma$ in a domain $Dsubsetmathbb{R}^d$, in the form $F(gamma) = int_0^1 f(gamma(t),dotgamma(t))dt$, it is of interest to approximate its minimum cost and geodesic paths. Let $X_1,ldots, X_n$ be points drawn ind
This paper is concerned with the existence of multiple points of Gaussian random fields. Under the framework of Dalang et al. (2017), we prove that, for a wide class of Gaussian random fields, multiple points do not exist in critical dimensions. The
We consider vector fixed point (FP) equations in large dimensional spaces involving random variables, and study their realization-wise solutions. We have an underlying directed random graph, that defines the connections between various components of
We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdos-Renyi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The resul