ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximating geodesics via random points

64   0   0.0 ( 0 )
 نشر من قبل Sunder Sethuraman
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a `cost functional $F$ on paths $gamma$ in a domain $Dsubsetmathbb{R}^d$, in the form $F(gamma) = int_0^1 f(gamma(t),dotgamma(t))dt$, it is of interest to approximate its minimum cost and geodesic paths. Let $X_1,ldots, X_n$ be points drawn independently from $D$ according to a distribution with a density. Form a random geometric graph on the points where $X_i$ and $X_j$ are connected when $0<|X_i - X_j|<epsilon$, and the length scale $epsilon=epsilon_n$ vanishes at a suitable rate. For a general class of functionals $F$, associated to Finsler and other distances on $D$, using a probabilistic form of Gamma convergence, we show that the minimum costs and geodesic paths, with respect to types of approximating discrete `cost functionals, built from the random geometric graph, converge almost surely in various senses to those corresponding to the continuum cost $F$, as the number of sample points diverges. In particular, the geodesic path convergence shown appears to be among the first results of its kind.

قيم البحث

اقرأ أيضاً

We consider a large class of random geometric graphs constructed from samples $mathcal{X}_n = {X_1,X_2,ldots,X_n}$ of independent, identically distributed observations of an underlying probability measure $ u$ on a bounded domain $Dsubset mathbb{R}^d $. The popular `modularity clustering method specifies a partition $mathcal{U}_n$ of the set $mathcal{X}_n$ as the solution of an optimization problem. In this paper, under conditions on $ u$ and $D$, we derive scaling limits of the modularity clustering on random geometric graphs. Among other results, we show a geometric form of consistency: When the number of clusters is a priori bounded above, the discrete optimal partitions $mathcal{U}_n$ converge in a certain sense to a continuum partition $mathcal{U}$ of the underlying domain $D$, characterized as the solution of a type of Kelvins shape optimization problem.
Given a branching random walk on a graph, we consider two kinds of truncations: by inhibiting the reproduction outside a subset of vertices and by allowing at most $m$ particles per site. We investigate the convergence of weak and strong critical par ameters of these truncated branching random walks to the analogous parameters of the original branching random walk. As a corollary, we apply our results to the study of the strong critical parameter of a branching random walk restricted to the cluster of a Bernoulli bond percolation.
Let $(M,g_1)$ be a complete $d$-dimensional Riemannian manifold for $d > 1$. Let $mathcal X_n$ be a set of $n$ sample points in $M$ drawn randomly from a smooth Lebesgue density $f$ supported in $M$. Let $x,y$ be two points in $M$. We prove that the normalized length of the power-weighted shortest path between $x, y$ through $mathcal X_n$ converges almost surely to a constant multiple of the Riemannian distance between $x,y$ under the metric tensor $g_p = f^{2(1-p)/d} g_1$, where $p > 1$ is the power parameter.
This paper is concerned with the existence of multiple points of Gaussian random fields. Under the framework of Dalang et al. (2017), we prove that, for a wide class of Gaussian random fields, multiple points do not exist in critical dimensions. The result is applicable to fractional Brownian sheets and the solutions of systems of stochastic heat and wave equations.
We consider vector fixed point (FP) equations in large dimensional spaces involving random variables, and study their realization-wise solutions. We have an underlying directed random graph, that defines the connections between various components of the FP equations. Existence of an edge between nodes i, j implies the i th FP equation depends on the j th component. We consider a special case where any component of the FP equation depends upon an appropriate aggregate of that of the random neighbor components. We obtain finite dimensional limit FP equations (in a much smaller dimensional space), whose solutions approximate the solution of the random FP equations for almost all realizations, in the asymptotic limit (number of components increase). Our techniques are different from the traditional mean-field methods, which deal with stochastic FP equations in the space of distributions to describe the stationary distributions of the systems. In contrast our focus is on realization-wise FP solutions. We apply the results to study systemic risk in a large financial heterogeneous network with many small institutions and one big institution, and demonstrate some interesting phenomenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا