ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical results for the distribution of shortest path lengths in random networks

375   0   0.0 ( 0 )
 نشر من قبل Eytan Katzav
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdos-Renyi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The results are in agreement with numerical simulations for a broad range of network sizes and connectivities. The average and standard deviation of the distribution are also obtained. In the case that the mean degree scales as $N^{alpha}$ with the network size, the distribution becomes extremely narrow in the asymptotic limit, namely almost all pairs of nodes are equidistant, at distance $d=lfloor 1/alpha rfloor$ from each other. The distribution of shortest path lengths between nodes of degree $m$ and the rest of the network is calculated. Its average is shown to be a monotonically decreasing function of $m$, providing an interesting relation between a local property and a global property of the network. The methodology presented here can be applied to more general classes of networks.



قيم البحث

اقرأ أيضاً

We present a full description of the nonergodic properties of wavefunctions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent $ u_parallel=1$ at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent $ u_perp=1/2$. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wavefunction moments, correlation functions and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
We consider an Erdos-Renyi random graph consisting of N vertices connected by randomly and independently drawing an edge between every pair of them with probability c/N so that at N->infinity one obtains a graph of finite mean degree c. In this regim e, we study the distribution of resistance distances between the vertices of this graph and develop an auxiliary field representation for this quantity in the spirit of statistical field theory. Using this representation, a saddle point evaluation of the resistance distance distribution is possible at N->infinity in terms of an 1/c expansion. The leading order of this expansion captures the results of numerical simulations very well down to rather small values of c; for example, it recovers the empirical distribution at c=4 or 6 with an overlap of around 90%. At large values of c, the distribution tends to a Gaussian of mean 2/c and standard deviation sqrt{2/c^3}. At small values of c, the distribution is skewed toward larger values, as captured by our saddle point analysis, and many fine features appear in addition to the main peak, including subleading peaks that can be traced back to resistance distances between vertices of specific low degrees and the rest of the graph. We develop a more refined saddle point scheme that extracts the corresponding degree-differentiated resistance distance distributions. We then use this approach to recover analytically the most apparent of the subleading peaks that originates from vertices of degree 1. Rather intuitively, this subleading peak turns out to be a copy of the main peak, shifted by one unit of resistance distance and scaled down by the probability for a vertex to have degree 1. We comment on a possible lack of smoothness in the true N->infinity distribution suggested by the numerics.
We reconsider the problem of the critical behavior of a three-dimensional $O(m)$ symmetric magnetic system in the presence of random anisotropy disorder with a generic trimodal random axis distribution. By introducing $n$ replicas to average over dis order it can be coarse-grained to a $phi^{4}$-theory with $m times n$ component order parameter and five coupling constants taken in the limit of $n to 0$. Using a field theory approach we renormalize the model to two-loop order and calculate the $beta$-functions within the $varepsilon$ expansion and directly in three dimensions. We analyze the corresponding renormalization group flows with the help of the Pade-Borel resummation technique. We show that there is no stable fixed point accessible from physical initial conditions whose existence was argued in the previous studies. This may indicate an absence of a long-range ordered phase in the presence of random anisotropy disorder with a generic random axis distribution.
We study a model for a random walk of two classes of particles (A and B). Where both species are present in the same site, the motion of As takes precedence over that of Bs. The model was originally proposed and analyzed in Maragakis et al., Phys. Re v. E 77, 020103 (2008); here we provide additional results. We solve analytically the diffusion coefficients of the two species in lattices for a number of protocols. In networks, we find that the probability of a B particle to be free decreases exponentially with the node degree. In scale-free networks, this leads to localization of the Bs at the hubs and arrest of their motion. To remedy this, we investigate several strategies to avoid trapping of the Bs: moving an A instead of the hindered B; allowing a trapped B to hop with a small probability; biased walk towards non-hub nodes; and limiting the capacity of nodes. We obtain analytic results for lattices and networks, and discuss the advantages and shortcomings of the possible strategies.
200 - Thimo Rohlf 2008
We calculate analytically the critical connectivity $K_c$ of Random Threshold Networks (RTN) for homogeneous and inhomogeneous thresholds, and confirm the results by numerical simulations. We find a super-linear increase of $K_c$ with the (average) a bsolute threshold $|h|$, which approaches $K_c(|h|) sim h^2/(2ln{|h|})$ for large $|h|$, and show that this asymptotic scaling is universal for RTN with Poissonian distributed connectivity and threshold distributions with a variance that grows slower than $h^2$. Interestingly, we find that inhomogeneous distribution of thresholds leads to increased propagation of perturbations for sparsely connected networks, while for densely connected networks damage is reduced; the cross-over point yields a novel, characteristic connectivity $K_d$, that has no counterpart in Boolean networks. Last, local correlations between node thresholds and in-degree are introduced. Here, numerical simulations show that even weak (anti-)correlations can lead to a transition from ordered to chaotic dynamics, and vice versa. It is shown that the naive mean-field assumption typical for the annealed approximation leads to false predictions in this case, since correlations between thresholds and out-degree that emerge as a side-effect strongly modify damage propagation behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا