ترغب بنشر مسار تعليمي؟ اضغط هنا

Interatomic forces, phonons, the Foreman-Lomer Theorem and the Blackman Sum Rule

181   0   0.0 ( 0 )
 نشر من قبل Andrew Stewart
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. M. Stewart




اسأل ChatGPT حول البحث

Foreman and Lomer proposed in 1957 a method of estimating the harmonic forces between parallel planes of atoms of primitive cubic crystals by Fourier transforming the squared frequencies of phonons propagating along principal directions. A generalized form of this theorem is derived in this paper and it is shown that it is more appropriate to apply the method to certain combinations of the phonon dispersion relations rather than to individual dispersion relations themselves. Further, it is also shown how the method may be extended to the non-primitive hexagonal close packed and diamond lattices. Explicit, exact and general relations in terms of atomic force constants are found for deviations from the Blackman sum rule which itself is shown to be derived from the generalized Foreman-Lomer theorem.

قيم البحث

اقرأ أيضاً

An equilibrium system which is perturbed by an external potential relaxes to a new equilibrium state, a process obeying the fluctuation-dissipation theorem. In contrast, perturbing by nonconservative forces yields a nonequilibrium steady state, and t he fluctuation-dissipation theorem can in general not be applied. Here we exploit a freedom inherent to linear response theory: Force fields which perform work that does not couple statistically to the considered observable can be added without changing the response. Using this freedom, we demonstrate that the fluctuation-dissipation theorem can be applied for certain nonconservative forces. We discuss the case of a nonconservative force field linear in particle coordinates, where the mentioned freedom can be formulated in terms of symmetries. In particular, for the case of shear, this yields a response formula, which we find advantageous over the known Green-Kubo relation in terms of statistical accuracy.
39 - F. Y. Wu , H. Y. Huang 1997
It is shown that certain sum rule identities exist which relate correlation functions for $n$ Potts spins on the boundary of a planar lattice for $ngeq 4$. Explicit expressions of the identities are obtained for $n=4,5$. It is also shown that the ide ntities provide the missing link needed for a complete determination of the duality relation for the $n$-point correlation function. The $n=4$ duality relation is obtained explicitly. More generally we deduce the number of correlation identities for any $n$ as well as an inversion relation and a conjecture on the general form of the duality relation.
61 - Haruki Watanabe 2021
The Bloch theorem is a general theorem restricting the persistent current associated with a conserved U(1) charge in a ground state or in a thermal equilibrium. It gives an upper bound of the magnitude of the current density, which is inversely propo rtional to the system size. In a recent preprint, Else and Senthil applied the argument for the Bloch theorem to a generalized Gibbs ensemble, assuming the presence of an additional conserved charge, and predicted a nonzero current density in the nonthermal steady state [D. V. Else and T. Senthil, arXiv:2106.15623]. In this work, we provide a complementary derivation based on the canonical ensemble, given that the additional charge is strictly conserved within the system by itself. Furthermore, using the example where the additional conserved charge is the momentum operator, we discuss that the persistent current tends to vanish when the system is in contact with an external momentum reservoir in the co-moving frame of the reservoir.
We present an analytical formalism, supported by numerical simulations, for studying forces that act on curved walls following temperature quenches of the surrounding ideal Brownian fluid. We show that, for curved surfaces, the post-quench forces ini tially evolve rapidly to an extremal value, whereafter they approach their steady state value algebraically in time. In contrast to the previously-studied case of flat boundaries (lines or planes), the algebraic decay for the curved geometries depends on the dimension of the system. Specifically, the steady-state values of the force are approached in time as $t^{-d/2}$ in d-dimensional spherical (curved) geometries. For systems consisting of concentric circles or spheres, the exponent does not change for the force on the outer circle or sphere. However, the force exerted on the inner circle or sphere experiences an overshoot and, as a result, does not evolve towards the steady state in a simple algebraic manner. The extremal value of the force also depends on the dimension of the system, and originates from the curved boundaries and the fact that particles inside a sphere or circle are locally more confined, and diffuse less freely than particles outside the circle or sphere.
Much attention has been given to a possible violation of the optical sum rule in the cuprates, and the connection this might have to kinetic energy lowering. The optical integral is composed of a cut-off independent term (whose temperature dependence is a measure of the sum rule violation), plus a cut-off dependent term that accounts for the extension of the Drude peak beyond the upper bound of the integral. We find that the temperature dependence of the optical integral in the normal state of the cuprates can be accounted for solely by the latter term, implying that the dominant contribution to the observed sum rule `violation in the normal state is due to the finite cut-off. This cut-off dependent term is well modeled by a theory of electrons interacting with a broad spectrum of bosons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا