ﻻ يوجد ملخص باللغة العربية
An equilibrium system which is perturbed by an external potential relaxes to a new equilibrium state, a process obeying the fluctuation-dissipation theorem. In contrast, perturbing by nonconservative forces yields a nonequilibrium steady state, and the fluctuation-dissipation theorem can in general not be applied. Here we exploit a freedom inherent to linear response theory: Force fields which perform work that does not couple statistically to the considered observable can be added without changing the response. Using this freedom, we demonstrate that the fluctuation-dissipation theorem can be applied for certain nonconservative forces. We discuss the case of a nonconservative force field linear in particle coordinates, where the mentioned freedom can be formulated in terms of symmetries. In particular, for the case of shear, this yields a response formula, which we find advantageous over the known Green-Kubo relation in terms of statistical accuracy.
We introduce a simple prescription for calculating the spectra of thermal fluctuations of temperature-dependent quantities of the form $hat{delta T}(t)=int d^3vec{r} delta T(vec{r},t) q(vec{r})$. Here $T(vec{r}, t)$ is the local temperature at locati
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sa
The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter.By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear re
When nano-magnets are coupled to random external sources, their magnetization becomes a random variable, whose properties are defined by an induced probability density, that can be reconstructed from its moments, using the Langevin equation, for mapp
We examine the Hall conductivity of macroscopic two-dimensional quantum system, and show that the observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response (LR) regime infinitesimally close to eq