ﻻ يوجد ملخص باللغة العربية
We present centimeter and millimeter observations of the NGC 2071 star-forming region performed with the VLA and CARMA. We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources show SEDs dominated by free-free thermal emission at cm wavelengths, and thermal dust emission at mm wavelengths, suggesting that all of them are associated with YSOs. IRS 1 shows a complex morphology at 3.6 cm, with changes in the direction of its elongation. We discuss two possible explanations to this morphology: the result of changes in the direction of a jet due to interactions with a dense ambient medium, or that we are actually observing the superposition of two jets arising from two components of a binary system. Higher angular resolution observations at 1.3 cm support the second possibility, since a double source is inferred at this wavelength. IRS 3 shows a clear jet-like morphology at 3.6 cm. Over a time-span of four years, we observed changes in the morphology of this source that we interpret as due to ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is angularly resolved, with a deconvolved size (FWHM) of ~120 AU, and seems to be tracing a dusty circumstellar disk perpendicular to the radio jet. An irradiated accretion disk model around an intermediate-mass YSO can account for the observed SED and spatial intensity profile at 3 mm, supporting this interpretation.
We have conducted deep JHKs imaging polarimetry of a ~8 x 8 area of the NGC 2071 star forming region. Our polarization data have revealed various infrared reflection nebulae (IRNe) associated with the central IR young star cluster NGC2071IR and ident
It is still debated whether star formation process depends on environment. In particular it is yet unclear whether star formation in the outer Galaxy, where the environmental conditions are, theoretically, less conducive, occurs in the same way as in
We present observations of twelve rotational transitions of H2O-16, H2O-18, and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star form
The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system
The formation of stars in massive clusters is one of the main modes of the star formation process. However, the study of massive star forming regions is hampered by their typically large distances to the Sun. One exception to this is the massive star