ﻻ يوجد ملخص باللغة العربية
It is still debated whether star formation process depends on environment. In particular it is yet unclear whether star formation in the outer Galaxy, where the environmental conditions are, theoretically, less conducive, occurs in the same way as in the inner Galaxy. We investigate the population of NGC1893, a young cluster ~3-4 Myr in the outer part of the Galaxy (galactic radius >11 Kpc), to explore the effects of environmental conditions on star forming regions. We present infrared observations acquired using the IRAC camera onboard the Spitzer Space Telescope and analyze the color-color diagrams to establish the membership of stars with excesses. We also merge this information with that obtained from Chandra ACIS-I observations, to identify the Class III population. We find that the cluster is very rich, with 242 PMS Classical T-Tauri stars and 7 Class 0/I stars. We identify 110 Class III candidate cluster members in the ACIS-I field of view. We estimate a disk fraction for NGC1893 of about 67%, similar to fractions calculated for nearby star forming regions of the same age. Although environmental conditions are unfavorable, star formation can clearly be very successful in the outer Galaxy, allowing creation of a very rich cluster like NGC1893.
We present centimeter and millimeter observations of the NGC 2071 star-forming region performed with the VLA and CARMA. We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources sho
Different environmental conditions can play a crucial role in determining final products of the star formation process and in this context, less favorable activities of star formation are expected in the external regions of our Galaxy. We studied the
We performed astrometric observations with the VLBA of WB89-437, an H2O maser source in the Outer spiral arm of the Galaxy. We measure an annual parallax of 0.167 +/- 0.006 mas, corresponding to a heliocentric distance of 6.0 +/- 0.2 kpc or a Galacto
We present a comprehensive multi-wavelength study of the star-forming region NGC 1893 to explore the effects of massive stars on low-mass star formation. Using near-infrared colours, slitless spectroscopy and narrow-band $Halpha$ photometry in the cl
The formation of stars in massive clusters is one of the main modes of the star formation process. However, the study of massive star forming regions is hampered by their typically large distances to the Sun. One exception to this is the massive star