ﻻ يوجد ملخص باللغة العربية
The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system. While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic Centre. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. We use high sensitivity, high spatial and spectral resolution observations obtained with ALMA to study transitions of the less abundant, optically thin, methanol-isotopologues: (13)CH3OH, CH3(18)OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming LTE and excitation temperatures of 120-330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD ratios that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic Centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced.
We present observations of twelve rotational transitions of H2O-16, H2O-18, and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star form
We aim at deriving the molecular abundances and temperatures of the hot molecular cores in the high-mass star-forming region NGC 6334I and consequently deriving their physical and astrochemical conditions. In the framework of the Herschel guaranteed
We present Herschel/HIFI observations of 30 transitions of water isotopologues toward the high-mass star forming region NGC 6334 I. The line profiles of H_2^{16}O, H_2^{17}O, H_2^{18}O, and HDO show a complex pattern of emission and absorption compon
An unbiased spectral line survey toward a solar-type Class 0/I protostar, IRAS04368+2557, in L1527 has been carried out in the 3 mm band with the Nobeyama 45 m telescope. L1527 is known as a warm carbon-chain chemistry (WCCC) source, which harbors ab
We present results of continuum and spectral line observations with ALMA and 22 GHz water (H$_2$O) maser observations using KaVA and VERA toward a high-mass star-forming region, G25.82-0.17. Multiple 1.3 mm continuum sources are revealed, indicating