ﻻ يوجد ملخص باللغة العربية
Fluctuations of thermodynamic quantities are fundamental for the study of the QGP phase transition. Among several observables calculated on an event-by-event basis, the different measures of the charge and mean transverse momentum fluctuations are of particular interest since they are considered to be indicators of the existence and of the order of this transition as well as of the thermalization in heavy--ion collisions. In this article, we review the first results from the event-by-event physics program of the ALICE experiment at the LHC in Pb--Pb collisions at $sqrt{s_{NN}} = 2.76$ TeV. The experimental results will be compared to previously published data and available model predictions.
Separation of charges along the extreme magnetic field created in non-central relativistic heavy--ion collisions is predicted to be a signature of local parity violation in strong interactions. We report on results for charge dependent two particle a
A simple approach based on the separation of wounded nucleons in an A-A collision in two categories, those suffering single collisions - corona and the rest - core, estimated within a Glauber Monte-Carlo approach, explains the centrality dependence o
We analyze the elliptic flow parameter v_2 in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV and in Au+Au collisions at sqrt{s_{NN}} =200 GeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with
The Parton-Hadron-String-Dynamics (PHSD) transport model is used to study the influence of the initial size of spatial fluctuations of the interacting system on flow observables in Pb-Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV for different centralit
The study of formation of heavy quarkonia in relativistic heavy ion collisions provides important insight into the properties of the produced high density QCD medium. Lattice QCD studies show sequential suppression of quarkonia states with increasing