ﻻ يوجد ملخص باللغة العربية
Separation of charges along the extreme magnetic field created in non-central relativistic heavy--ion collisions is predicted to be a signature of local parity violation in strong interactions. We report on results for charge dependent two particle azimuthal correlations with respect to the reaction plane for Pb--Pb collisions at $sqrt{s_{NN}} = 2.76$ TeV recorded in 2010 with ALICE at the LHC. The results are compared with measurements at RHIC energies and against currently available model predictions for LHC. Systematic studies of possible background effects including comparison with conventional (parity-even) correlations simulated with Monte Carlo event generators of heavy--ion collisions are also presented.
A simple approach based on the separation of wounded nucleons in an A-A collision in two categories, those suffering single collisions - corona and the rest - core, estimated within a Glauber Monte-Carlo approach, explains the centrality dependence o
Fluctuations of thermodynamic quantities are fundamental for the study of the QGP phase transition. Among several observables calculated on an event-by-event basis, the different measures of the charge and mean transverse momentum fluctuations are of
The study of formation of heavy quarkonia in relativistic heavy ion collisions provides important insight into the properties of the produced high density QCD medium. Lattice QCD studies show sequential suppression of quarkonia states with increasing
The momentum correlation between protons and lambda particles emitted from central Pb+Pb collisions at sqrt(s_{NN}) = 17.3 GeV was studied by the NA49 experiment at the CERN SPS. A clear enhancement is observed for small relative momenta (q_{inv} < 0
We predict the elliptic flow parameter v_2 in U+U collisions at sqrt{s_{NN}}=200 GeV and in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a s