ترغب بنشر مسار تعليمي؟ اضغط هنا

Core-corona interplay in Pb-Pb collisions at $sqrt{s_{NN}}$=2.76 TeV

76   0   0.0 ( 0 )
 نشر من قبل Mihai Petrovici
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple approach based on the separation of wounded nucleons in an A-A collision in two categories, those suffering single collisions - corona and the rest - core, estimated within a Glauber Monte-Carlo approach, explains the centrality dependence of the light flavor hadrons production in Pb-Pb collisions at $sqrt{s_{NN}}$=2.76 TeV. The core contribution does not include any dependence of any process on the fireball shape as a function of the impact parameter. Therefore, the ratios of the $p_T$ distributions to the one corresponding to the minimum bias pp collisions at the same energy, each of them normalised to the corresponding charged particle density, the $langle p_Trangle$ and transverse energy per unit of rapidity are reproduced less accurate by such an approach. The results show that the corona contribution plays an important role also at LHC energies and it has to be considered in order to evidence the centrality dependence of different observables related to the core properties and dynamics.

قيم البحث

اقرأ أيضاً

We predict the elliptic flow parameter v_2 in U+U collisions at sqrt{s_{NN}}=200 GeV and in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a s tate-of-the-art lattice QCD equation of state, and the subsequent hadronic stage by a hadron cascade model.
Separation of charges along the extreme magnetic field created in non-central relativistic heavy--ion collisions is predicted to be a signature of local parity violation in strong interactions. We report on results for charge dependent two particle a zimuthal correlations with respect to the reaction plane for Pb--Pb collisions at $sqrt{s_{NN}} = 2.76$ TeV recorded in 2010 with ALICE at the LHC. The results are compared with measurements at RHIC energies and against currently available model predictions for LHC. Systematic studies of possible background effects including comparison with conventional (parity-even) correlations simulated with Monte Carlo event generators of heavy--ion collisions are also presented.
We analyze the elliptic flow parameter v_2 in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV and in Au+Au collisions at sqrt{s_{NN}} =200 GeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a state-of-the-art lattice QCD equation of state, and the subsequent hadronic stage by a hadron cascade model. For initial conditions, we employ Monte-Car
The Parton-Hadron-String-Dynamics (PHSD) transport model is used to study the influence of the initial size of spatial fluctuations of the interacting system on flow observables in Pb-Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV for different centralit ies. While the flow coefficients $v_2$, $v_3$, $v_4$ and $v_5$ are reasonably described in comparison to the data from the ALICE Collaboration for different centralities within the default setting, no essential sensitivity is found with respect to the initial size of spatial fluctuations even for very central collisions where the flow coefficients are dominated by the size of initial state fluctuations. We attribute this lack of sensitivity partly to the low interaction rate of the degrees-of-freedom in this very early phase of order $sim$ 0.3 fm/c which is also in common with the weakly interacting color glass condensate (CGC) or glasma approach. Moreover, since the event shape in the transverse plane is approximately the same for different size of spatial fluctuations very similar eccentricities $epsilon_n$ are transformed to roughly the same flow coefficients $v_n$ in momentum space.
In the continuation of our previous work, the transverse momentum ($p_T$) spectra and nuclear modification factor ($R_{AA}$) are derived using relaxation time approximation of Boltzmann Transport Equation (BTE). The initial $p_T$-distribution used to describe $p+p$ collisions has been studied with the pQCD inspired power-law distribution, the Hagedorns empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the $p_T$-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, $K^{*0}$ and $phi$. It is observed that the present formalism while explaining the transverse momentum spectra upto 5 GeV/c, explains the nuclear modification factor very well upto 8 GeV/c in $p_T$ for all these particles except for protons. $R_{AA}$ is found to be independent of the degree of non-extensivity, $q_{pp}$ after $p_T sim$ 8 GeV/c.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا