ﻻ يوجد ملخص باللغة العربية
We investigate a model system for the injection of fermionic particles from filled source sites into an empty chain. We study the ensuing dynamics for Hermitian as well as for non-Hermitian time evolution where the particles cannot return to the bath sites (quantum ratchet). A non-homogeneous hybridization between bath and chain sites permits transient currents in the chain. Non-interacting particles show decoherence in the thermodynamic limit: the average particle number and the average current density in the chain become stationary for long times, whereas the single-particle density matrix displays large fluctuations around its mean value. Using the numerical time-dependent density-matrix renormalization group ($t$-DMRG) method we demonstrate, on the other hand, that sizable density-density interactions between the particles introduce relaxation which is by orders of magnitudes faster than the decoherence processes.
We study the Hubbard model with non-Hermitian asymmetric hopping terms. The conjugate hopping terms are introduced for two spin components so that the negative sign is canceled out. This ensures that the quantum Monte Carlo simulation is free from th
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is inve
Quantum chaos in hermitian systems concerns the sensitivity of long-time dynamical evolution to initial conditions. The skin effect discovered recently in non-hermitian systems reveals the sensitivity to the spatial boundary condition even deeply in
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically pr
Non-Hermitian skin effect, namely that the eigenvalues and eigenstates of a non-Hermitian tight-binding Hamiltonian have significant differences under open or periodic boundary conditions, is a remarkable phenomenon of non-Hermitian systems. Inspired