ﻻ يوجد ملخص باللغة العربية
We study the Hubbard model with non-Hermitian asymmetric hopping terms. The conjugate hopping terms are introduced for two spin components so that the negative sign is canceled out. This ensures that the quantum Monte Carlo simulation is free from the negative sign problem. We analyze the antiferromagnetic order and its suppression by the non-Hermiticity.
We investigate a model system for the injection of fermionic particles from filled source sites into an empty chain. We study the ensuing dynamics for Hermitian as well as for non-Hermitian time evolution where the particles cannot return to the bath
We show that, by an appropriate choice of auxiliary fields and exact integration of the phonon degrees of freedom, it is possible to define a sign-free path integral for the so called Hubbard-Holstein model at half-filling. We use a statistical metho
We present a practical analysis of the fermion sign problem in fermionic path integral Monte Carlo (PIMC) simulations in the grand-canonical ensemble (GCE). As a representative model system, we consider electrons in a $2D$ harmonic trap. We find that
The introduction of non-Hermiticity has greatly enriched the research field of traditional condensed matter physics, and eventually led to a series of discoveries of exotic phenomena. We investigate the effect of non-Hermitian imaginary hoppings on t
In this letter, we use the exactly solvable Sachdev-Ye-Kitaev model to address the issue of entropy dynamics when an interacting quantum system is coupled to a non-Markovian environment. We find that at the initial stage, the entropy always increases