ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks

155   0   0.0 ( 0 )
 نشر من قبل Shuichi Matsukiyo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.



قيم البحث

اقرأ أيضاً

Using large-scale fully-kinetic two-dimensional particle-in-cell simulations, we investigate the effects of shock rippling on electron acceleration at low-Mach-number shocks propagating in high-$beta$ plasmas, in application to merger shocks in galax y clusters. We find that the electron acceleration rate increases considerably when the rippling modes appear. The main acceleration mechanism is stochastic shock-drift acceleration, in which electrons are confined at the shock by pitch-angle scattering off turbulence and gain energy from the motional electric field. The presence of multi-scale magnetic turbulence at the shock transition and the region immediately behind the main shock overshoot is essential for electron energization. Wide-energy non-thermal electron distributions are formed both upstream and downstream of the shock. The maximum energy of the electrons is sufficient for their injection into diffusive shock acceleration. We show for the first time that the downstream electron spectrum has a~power-law form with index $papprox 2.5$, in agreement with observations.
214 - Y. Matsumoto , T. Amano , 2013
Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfven Mach-number ($M_A sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) an d electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-high-$M_A$ regime.
How electrons get accelerated to relativistic energies in a high-Mach-number quasi-perpendicular shock is presented by means of ab initio particle-in-cell simulations in three dimensions. We found that coherent electrostatic Buneman waves and ion-Wei bel magnetic turbulence coexist in a strong-shock structure whereby particles gain energy during shock-surfing and subsequent stochastic drift accelerations. Energetic electrons that initially experienced the surfing acceleration undergo pitch-angle diffusion by interacting with magnetic turbulence and continuous acceleration during confinement in the shock transition region. The ion-Weibel turbulence is the key to the efficient nonthermal electron acceleration.
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-size radio sources have been found, so-called radio relics. These relics are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach number collisionless shocks generated by cluster-cluster merger events. A long-standing problem is how low-Mach number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here we report on the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.
The existence and properties of low Mach-number ($M gtrsim 1$) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا