ترغب بنشر مسار تعليمي؟ اضغط هنا

The Case for Electron Re-Acceleration at Galaxy Cluster Shocks

59   0   0.0 ( 0 )
 نشر من قبل Reinout van Weeren
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-size radio sources have been found, so-called radio relics. These relics are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach number collisionless shocks generated by cluster-cluster merger events. A long-standing problem is how low-Mach number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here we report on the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

قيم البحث

اقرأ أيضاً

An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma tem perature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.
We study diffusive shock acceleration (DSA) of electrons in non-relativistic quasi-perpendicular shocks using self-consistent one-dimensional particle-in-cell (PIC) simulations. By exploring the parameter space of sonic and Alfv{e}nic Mach numbers we find that high Mach number quasi-perpendicular shocks can efficiently accelerate electrons to power-law downstream spectra with slopes consistent with DSA prediction. Electrons are reflected by magnetic mirroring at the shock and drive non-resonant waves in the upstream. Reflected electrons are trapped between the shock front and upstream waves and undergo multiple cycles of shock drift acceleration before the injection into DSA. Strong current-driven waves also temporarily change the shock obliquity and cause mild proton pre-acceleration even in quasi-perpendicular shocks, which otherwise do not accelerate protons. These results can be used to understand nonthermal emission in supernova remnants and intracluster medium in galaxy clusters.
Radio relics are sites of electron (re)acceleration in merging galaxy clusters but the mechanism of acceleration and the topology of the magnetic field in and near relics are yet to be understood. We are carrying out an observational campaign on doub le relic galaxy clusters starting with RXC J1314.4-2515. With $Jansky Very Large Array$ multi-configuration observations in the frequency range 1-4 GHz, we perform both spectral and polarization analyses, using the Rotation Measure synthesis technique. We use archival $XMM-Newton$ observations to constrain the properties of the shocked region. We discover a possible connection between the activity of a radio galaxy and the emission of the eastern radio relic. In the northern elongated arc of the western radio relic, we detect polarized emission with an average polarization fraction of $31 %$ at 3 GHz and we derive the Mach number of the underlying X-ray shock. Our observations reveal low levels of fractional polarization and Faraday-complex structures in the southern region of the relic, which point to the presence of thermal gas and filamentary magnetic field morphology inside the radio emitting volume. We measured largely different Rotation Measure dispersion from the two relics. Finally, we use cosmological magneto-hydrodynamical simulations to constrain the magnetic field, viewing angle, and to derive the acceleration efficiency of the shock. We find that the polarization properties of RXC J1314.4-2515 are consistent with a radio relic observed at $70^{circ}$ with respect to the line of sight and that efficient re-acceleration of fossil electrons has taken place.
Using large-scale fully-kinetic two-dimensional particle-in-cell simulations, we investigate the effects of shock rippling on electron acceleration at low-Mach-number shocks propagating in high-$beta$ plasmas, in application to merger shocks in galax y clusters. We find that the electron acceleration rate increases considerably when the rippling modes appear. The main acceleration mechanism is stochastic shock-drift acceleration, in which electrons are confined at the shock by pitch-angle scattering off turbulence and gain energy from the motional electric field. The presence of multi-scale magnetic turbulence at the shock transition and the region immediately behind the main shock overshoot is essential for electron energization. Wide-energy non-thermal electron distributions are formed both upstream and downstream of the shock. The maximum energy of the electrons is sufficient for their injection into diffusive shock acceleration. We show for the first time that the downstream electron spectrum has a~power-law form with index $papprox 2.5$, in agreement with observations.
We briefly discuss models of energetic particle acceleration by supernova shock in active starforming regions at different stages of their evolution. Strong shocks may strongly amplify magnetic fields due to cosmic ray driven instabilities. We discus s the magnetic field amplification emphasizing the role of the long-wavelength instabilities. Supernova shock propagating in the vicinity of a powerful stellar wind in a young stellar cluster is argued to increase the maximal CR energies at a given evolution stage of supernova remnant (SNR) and can convert a sizeable fraction of the kinetic energy release into energetic particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا