ﻻ يوجد ملخص باللغة العربية
The Atacama Large Millimeter Array (ALMA), a world-wide project (64x12m-dishes operating from 84 to 720 GHz, to be completed by 2011) will represent a jump of almost two orders of magnitude in sensitivity and angular resolution as compared to present millimeter/submillimeter interferometers, and will thus undoubtedly produce a major step in astrophysics. The main objectives will be the origins of galaxies, stars and planets. ALMA will be able to detect dust-enshrouded star-forming galaxies at redshifts z > 10, both in the emission of dust and spectral lines (CO and other species, including C+). It will also explore in detail the physical and chemical processes of star and planet formation hidden away in dusty molecular clouds and protoplanetary disks. In addition, ALMA will allow similar enormous gains in all other fields of mm and submm astronomy, including nearby galaxies, AGN, astrochemistry, circumstellar shells and the solar system.
GRBs generate an afterglow emission that can be detected from radio to X-rays during days, or even weeks after the initial explosion. The peak of this emission crosses the mm/submm range during the first hours to days, making their study in this rang
We present ALMA Band 6 observations (1.3 mm/233 GHz) of Fomalhaut and its debris disc. The observations achieve a sensitivity of 17 $mu$Jy and a resolution of 0.28 arcsec (2.1 au at a distance of 7.66 pc), which are the highest resolution observation
We propose the development of X-ray interferometry (XRI), to reveal the universe at high energies with ultra-high spatial resolution. With baselines which can be accommodated on a single spacecraft, XRI can reach 100 $mu$as resolution at 10 AA (1.2 k
Using ALMA observations, we performed the first systematic survey for transient brightenings (i.e. weak, small-scale episodes of energy release) in the quiet solar chromosphere at 3 mm. Our dataset included images of six 87 x 87 regions of the quiet
The thermal radio and sub-mm emission from the winds of massive stars is investigated and the contribution to the emission due to the stellar wind acceleration region and clumping of the wind is quantified. Building upon established theory, a method