ﻻ يوجد ملخص باللغة العربية
Stars like our Sun form in self-gravitating dense and cold structures within interstellar clouds, called pre-stellar cores. Although much is known about the physical structure of dense clouds just before and soon after the switch-on of a protostar, the central few thousand astronomical units (au) of pre-stellar cores are unexplored. It is within these central regions that stellar systems assemble and fragmentation may take place, with the consequent formation of binaries and multiple systems. We present ALMA Band 6 observations (ACA and 12m array) of the dust continuum emission of the 8 Msun pre-stellar core L1544, with angular resolution of 2 x 1.6 (linear resolution 270 au x 216 au). Within the primary beam, a compact region of 0.1 Msun, which we call a kernel, has been unveiled. The kernel is elongated, with a central flat zone with radius Rker ~ 10 (~ 1400 au). The average number density within Rker is ~1 x 10^6 cm^{-3}, with possible local density enhancements. The region within Rker appears to have fragmented, but detailed analysis shows that similar substructure can be reproduced by synthetic interferometric observations of a smooth centrally concentrated dense core with a similar central flat zone. The presence of a smooth kernel within a dense core is in agreement with non-ideal magneto-hydro-dynamical simulations of a contracting cloud core with a peak number density of 1 x 10^7 cm^{-3}. Dense cores with lower central densities are completely filtered out when simulated 12m-array observations are carried out. These observations demonstrate that the kernel of dynamically evolved dense cores can be investigated at high angular resolution with ALMA.
We present the core mass function (CMF) of the massive star-forming clump G33.92+0.11 using 1.3 mm observations obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). With a resolution of 1000 au, this is one of the highest resolution
We present ALMA Band 6 observations (1.3 mm/233 GHz) of Fomalhaut and its debris disc. The observations achieve a sensitivity of 17 $mu$Jy and a resolution of 0.28 arcsec (2.1 au at a distance of 7.66 pc), which are the highest resolution observation
We analyze a sample of 12 HST-selected edge-on protoplanetary disks for which the vertical extent of the emission layers can be constrained directly. We present ALMA high angular resolution continuum images (0.1arcsec) of these disks at two wavelengt
Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 star
GRBs generate an afterglow emission that can be detected from radio to X-rays during days, or even weeks after the initial explosion. The peak of this emission crosses the mm/submm range during the first hours to days, making their study in this rang