ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobility-dependent Low-frequency Noise in Graphene Field Effect Transistors

106   0   0.0 ( 0 )
 نشر من قبل Xu Du
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the low-frequency 1/f noise of both suspended and on-substrate graphene field-effect transistors and its dependence on gate voltage, in the temperature range between 300K and 30K. We have found that the noise amplitude away from the Dirac point can be described by a generalized Hooges relation in which the Hooge parameter {alpha}H is not constant but decreases monotonically with the devices mobility, with a universal dependence that is sample and temperature independent. The value of {alpha}H is also affected by the dynamics of disorder, which is not reflected in the DC transport characteristics and varies with sample and temperature. We attribute the diverse behavior of gate voltage dependence of the noise amplitude to the relative contributions from various scattering mechanisms, and to potential fluctuations near the Dirac point caused by charge carrier inhomogeneity. The higher carrier mobility of suspended graphene devices accounts for values of 1/f noise significantly lower than those observed in on-substrate graphene devices and most traditional electronic materials.

قيم البحث

اقرأ أيضاً

We report results of experimental investigation of the low-frequency noise in the top-gate graphene transistors. The back-gate graphene devices were modified via addition of the top gate separated by 20 nm of HfO2 from the single-layer graphene chann els. The measurements revealed low flicker noise levels with the normalized noise spectral density close to 1/f (f is the frequency) and Hooge parameter below 2 x 10^-3. The analysis of the noise spectral density dependence on the top and bottom gate biases helped us to elucidate the noise sources in these devices and develop a strategy for the electronic noise reduction. The obtained results are important for all proposed graphene applications in electronics and sensors.
We utilize an organic polymer buffer layer between graphene and conventional gate dielectrics in top-gated graphene transistors. Unlike other insulators, this dielectric stack does not significantly degrade carrier mobility, allowing for high field-e ffect mobilities to be retained in top-gate operation. This is demonstrated in both two-point and four-point analysis, and in the high-frequency operation of a graphene transistor. Temperature dependence of the carrier mobility suggests that phonons are the dominant scatterers in these devices.
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e2/h, a high ON/OFF ratio of >107 at 170 K, and large electron and hole mobility of ~200 cm2V-1s-1 at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ~330 cm2V-1s-1 and that of holes to ~270 cm2V-1s-1. We attribute our ability to observe the intrinsic, phonon limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible and transparent low-resistance Ohmic contacts to a wide range of quasi-2D semiconductors. KEYWORDS: MoS2, WSe2, field-effect transistors, graphene, Schottky barrier, ionic-liquid gate
We present the results of the experimental investigation of the low - frequency noise in bilayer graphene transistors. The back - gated devices were fabricated using the electron beam lithography and evaporation. The charge neutrality point for the f abricated transistors was around 10 V. The noise spectra at frequencies above 10 - 100 Hz were of the 1/f - type with the spectral density on the order of 10E-23 - 10E-22 A2/Hz at the frequency of 1 kHz. The deviation from the 1/f spectrum at the frequencies below 10 -100 Hz indicates that the noise is of the carrier - number fluctuation origin due to the carrier trapping by defects. The Hooge parameter of 10E-4 was extracted for this type of devices. The gate dependence of the noise spectral density suggests that the noise is dominated by the contributions from the ungated part of the device channel and by the contacts. The obtained results are important for graphene electronic applications.
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electr ical characteristic is confirmed in a nearly 2.1 times improvement in on-resistance and a 3.3 times improvement in contact resistance with hetero-contacts compared to the MoS2 FETs without graphene contact layer. Temperature dependent study on MoS2/graphene hetero-contacts has been also performed, still unveiling its Schottky contact nature. Transfer length method and a devised I-V method have been introduced to study the contact resistance and Schottky barrier height in MoS2/graphene /metal hetero-contacts structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا