ﻻ يوجد ملخص باللغة العربية
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electrical characteristic is confirmed in a nearly 2.1 times improvement in on-resistance and a 3.3 times improvement in contact resistance with hetero-contacts compared to the MoS2 FETs without graphene contact layer. Temperature dependent study on MoS2/graphene hetero-contacts has been also performed, still unveiling its Schottky contact nature. Transfer length method and a devised I-V method have been introduced to study the contact resistance and Schottky barrier height in MoS2/graphene /metal hetero-contacts structure.
Transition-metal dichalcogenides (TMDCs) are important class of two-dimensional (2D) layered materials for electronic and optoelectronic applications, due to their ultimate body thickness, sizable and tunable bandgap, and decent theoretical room-temp
Mycotoxins comprise a frequent type of toxins present in food and feed. The problem of mycotoxin contamination has been recently aggravated due to the increased complexity of the farm-to-fork chains, resulting in negative effects on human and animal
Atomically-thin two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, we report on the fabrication of ReS2 field-effect t
We utilize an organic polymer buffer layer between graphene and conventional gate dielectrics in top-gated graphene transistors. Unlike other insulators, this dielectric stack does not significantly degrade carrier mobility, allowing for high field-e
We report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel m