ترغب بنشر مسار تعليمي؟ اضغط هنا

Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors

201   0   0.0 ( 0 )
 نشر من قبل Damon Farmer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We utilize an organic polymer buffer layer between graphene and conventional gate dielectrics in top-gated graphene transistors. Unlike other insulators, this dielectric stack does not significantly degrade carrier mobility, allowing for high field-effect mobilities to be retained in top-gate operation. This is demonstrated in both two-point and four-point analysis, and in the high-frequency operation of a graphene transistor. Temperature dependence of the carrier mobility suggests that phonons are the dominant scatterers in these devices.



قيم البحث

اقرأ أيضاً

Transition-metal dichalcogenides (TMDCs) are important class of two-dimensional (2D) layered materials for electronic and optoelectronic applications, due to their ultimate body thickness, sizable and tunable bandgap, and decent theoretical room-temp erature mobility of hundreds to thousands cm2/Vs. So far, however, all TMDCs show much lower mobility experimentally because of the collective effects by foreign impurities, which has become one of the most important limitations for their device applications. Here, taking MoS2 as an example, we review the key factors that bring down the mobility in TMDC transistors, including phonons, charged impurities, defects, and charge traps. We introduce a theoretical model that quantitatively captures the scaling of mobility with temperature, carrier density and thickness. By fitting the available mobility data from literature over the past few years, we are able to obtain the density of impurities and traps for a wide range of transistor structures. We show that interface engineering such as oxide surface passivation, high-k dielectrics and BN encapsulation could effectively reduce the impurities, leading to improved device performances. For few-layer TMDCs, we analytically model the lopsided carrier distribution to elucidate the experimental increase of mobility with the number of layers. From our analysis, it is clear that the charge transport in TMDC samples is a very complex problem that must be handled carefully. We hope that this Review can provide new insights and serve as a starting point for further improving the performance of TMDC transistors.
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e2/h, a high ON/OFF ratio of >107 at 170 K, and large electron and hole mobility of ~200 cm2V-1s-1 at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ~330 cm2V-1s-1 and that of holes to ~270 cm2V-1s-1. We attribute our ability to observe the intrinsic, phonon limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible and transparent low-resistance Ohmic contacts to a wide range of quasi-2D semiconductors. KEYWORDS: MoS2, WSe2, field-effect transistors, graphene, Schottky barrier, ionic-liquid gate
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electr ical characteristic is confirmed in a nearly 2.1 times improvement in on-resistance and a 3.3 times improvement in contact resistance with hetero-contacts compared to the MoS2 FETs without graphene contact layer. Temperature dependent study on MoS2/graphene hetero-contacts has been also performed, still unveiling its Schottky contact nature. Transfer length method and a devised I-V method have been introduced to study the contact resistance and Schottky barrier height in MoS2/graphene /metal hetero-contacts structure.
163 - Yan Zhang , E. E. Mendez , 2011
We have investigated the low-frequency 1/f noise of both suspended and on-substrate graphene field-effect transistors and its dependence on gate voltage, in the temperature range between 300K and 30K. We have found that the noise amplitude away from the Dirac point can be described by a generalized Hooges relation in which the Hooge parameter {alpha}H is not constant but decreases monotonically with the devices mobility, with a universal dependence that is sample and temperature independent. The value of {alpha}H is also affected by the dynamics of disorder, which is not reflected in the DC transport characteristics and varies with sample and temperature. We attribute the diverse behavior of gate voltage dependence of the noise amplitude to the relative contributions from various scattering mechanisms, and to potential fluctuations near the Dirac point caused by charge carrier inhomogeneity. The higher carrier mobility of suspended graphene devices accounts for values of 1/f noise significantly lower than those observed in on-substrate graphene devices and most traditional electronic materials.
Mycotoxins comprise a frequent type of toxins present in food and feed. The problem of mycotoxin contamination has been recently aggravated due to the increased complexity of the farm-to-fork chains, resulting in negative effects on human and animal health and, consequently, economics. The easy-to-use, on-site, on-demand, and rapid monitoring of mycotoxins in food/feed is highly desired. In this work, we report on an advanced bioelectronic mycotoxin sensor based on graphene field-effect transistors integrated on a silicon chip. A specific aptamer for Ochratoxin A (OTA) was attached to graphene through covalent bonding with the pyrene-based linker, which was deposited with an electric field stimulation to increase the surface coverage. This graphene/aptamer sensor demonstrates high sensitivity to OTA with the lowest detection limit of 1.4 pM within a response time of 10 s which is superior to any other reported aptamer-based methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا