ترغب بنشر مسار تعليمي؟ اضغط هنا

Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?

148   0   0.0 ( 0 )
 نشر من قبل Ilian Iliev
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ilian T. Iliev




اسأل ChatGPT حول البحث

The prospect of detecting the first galaxies by observing their impact on the intergalactic medium as they reionized it during the first billion years leads us to ask whether such indirect observations are capable of diagnosing which types of galaxies were most responsible for reionization. We attempt to answer this by considering a set of large-scale radiative transfer simulations of reionization in sufficiently large volumes to make statistically meaningful predictions of observable signatures, while also directly resolving all atomically-cooling halos down to 10^8 M_solar. We focus here on predictions of the 21-cm background, to see if upcoming observations are capable of distinguishing a universe ionized primarily by high-mass halos from one in which both high-mass and low-mass halos are responsible, and to see how these results depend upon the uncertain source efficiencies. We find that 21-cm fluctuation power spectra observed by the first generation EoR/21-cm radio interferometer arrays should be able to distinguish the case of reionization by high-mass halos alone from that by both high- and low-mass halos, together. Some reionization scenarios yield very similar power spectra and rms evolution and thus can only be discriminated by their different mean reionization history and 21-cm PDF distributions. We find that the skewness of the 21-cm PDF distribution smoothed over LOFAR-like window shows a clear feature correlated with the rise of the rms due to patchiness. Measurements of the mean photoionization rates are sensitive to the average density of the regions being studied and therefore could be strongly skewed in certain cases. (abridged)

قيم البحث

اقرأ أيضاً

Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preli minary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signal: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that that the SKA1-low should be able to detect ionized bubbles of radius $R_b gtrsim 10$ Mpc with $sim 100$ hr of observations at redshift $z sim 8$ provided that the mean outside neutral Hydrogen fraction $ x_{rm HI} gtrsim 0.5$. We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. 2011. We find that a $5 sigma$ detection is possible with $600$ hr of SKA1-low observations if the QSO age and the outside $ x_{rm HI} $ are at least $sim 2 times 10^7$ Myr and $sim 0.2$ respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly-$alpha$ sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total $sim 1000$ hr of observations, SKA1-low should be able to detect those sources individually with a $sim 9 sigma$ significance at redshift $z=15$. We summarize how the SNR changes with various parameters related to the source properties.
Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology fro m redshifts 1<z<4 . In this review we discuss recent advances in our theoretical understanding of the epoch of reionization (EoR), the application of 21 cm tomography to cosmology and measurements of the dark energy equation of state after reionization, and the instrumentation and observational techniques shared by 21 cm EoR and post reionization cosmology machines. We place particular emphasis on the expected signal and observational capabilities of first generation 21 cm fluctuation instruments.
The observed 21-cm signal from the epoch of reionization will be distorted along the line-of-sight by the peculiar velocities of matter particles. These redshift-space distortions will affect the contrast in the signal and will also make it anisotrop ic. This anisotropy contains information about the cross-correlation between the matter density field and the neutral hydrogen field, and could thus potentially be used to extract information about the sources of reionization. In this paper, we study a collection of simulated reionization scenarios assuming different models for the sources of reionization. We show that the 21-cm anisotropy is best measured by the quadrupole moment of the power spectrum. We find that, unless the properties of the reionization sources are extreme in some way, the quadrupole moment evolves very predictably as a function of global neutral fraction. This predictability implies that redshift-space distortions are not a very sensitive tool for distinguishing between reionization sources. However, the quadrupole moment can be used as a model-independent probe for constraining the reionization history. We show that such measurements can be done to some extent by first-generation instruments such as LOFAR, while the SKA should be able to measure the reionization history using the quadrupole moment of the power spectrum to great accuracy.
76 - Jaehong Park 2019
Next generation observatories will enable us to study the first billion years of our Universe in unprecedented detail. Foremost among these are 21-cm interferometry with the HERA and the SKA, and high-$z$ galaxy observations with the James Webb Space Telescope (JWST). Taking a basic galaxy model, in which we allow the star formation rates and ionizing escape fractions to have a power-law dependence on halo mass with an exponential turnover below some threshold, we quantify how observations from these instruments can be used to constrain the astrophysics of high-$z$ galaxies. For this purpose, we generate mock JWST LFs, based on two different hydrodynamical cosmological simulations; these have intrinsic luminosity functions (LFs) which turn over at different scales and yet are fully consistent with present-day observations. We also generate mock 21-cm power spectrum observations, using 1000h observations with SKA1 and a moderate foreground model. Using only JWST data, we predict up to a factor of 2-3 improvement (compared with HST) in the fractional uncertainty of the star formation rate to halo mass relation and the scales at which the LFs peak (i.e. turnover). Most parameters regulating the UV galaxy properties can be constrained at the level of $sim 10$% or better, if either (i) we are able to better characterize systematic lensing uncertainties than currently possible; or (ii) the intrinsic LFs peak at magnitudes brighter than $M_{rm UV} lesssim -13$. Otherwise, improvement over HST-based inference is modest. When combining with upcoming 21-cm observations, we are able to significantly mitigate degeneracies, and constrain all of our astrophysical parameters, even for our most pessimistic assumptions about upcoming JWST LFs. The 21-cm observations also result in an order of magnitude improvement in constraints on the EoR history.
Heating of neutral gas by energetic sources is crucial for the prediction of the 21 cm signal during the epoch of reionization (EoR). To investigate differences induced on statistics of the 21 cm signal by various source types, we use five radiative transfer simulations which have the same stellar UV emission model and varying combinations of more energetic sources, such as X-ray binaries (XRBs), accreting nuclear black holes (BHs) and hot interstellar medium emission (ISM). We find that the efficient heating from the ISM increases the average global 21~cm signal, while reducing its fluctuations and thus power spectrum. A clear impact is also observed in the bispectrum in terms of scale and timing of the transition between a positive and a negative value. The impact of XRBs is similar to that of the ISM, although it is delayed in time and reduced in intensity because of the less efficient heating. Due to the paucity of nuclear BHs, the behaviour of the 21~cm statistics in their presence is very similar to that of a case when only stars are considered, with the exception of the latest stages of reionization, when the effect of BHs is clearly visible. We find that differences between the source scenarios investigated here are larger than the instrumental noise of SKA1-low at $z gtrsim 7-8$, suggesting that in the future it might be possible to constrain the spectral energy distribution of the sources contributing to the reionization process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا