ﻻ يوجد ملخص باللغة العربية
Next generation observatories will enable us to study the first billion years of our Universe in unprecedented detail. Foremost among these are 21-cm interferometry with the HERA and the SKA, and high-$z$ galaxy observations with the James Webb Space Telescope (JWST). Taking a basic galaxy model, in which we allow the star formation rates and ionizing escape fractions to have a power-law dependence on halo mass with an exponential turnover below some threshold, we quantify how observations from these instruments can be used to constrain the astrophysics of high-$z$ galaxies. For this purpose, we generate mock JWST LFs, based on two different hydrodynamical cosmological simulations; these have intrinsic luminosity functions (LFs) which turn over at different scales and yet are fully consistent with present-day observations. We also generate mock 21-cm power spectrum observations, using 1000h observations with SKA1 and a moderate foreground model. Using only JWST data, we predict up to a factor of 2-3 improvement (compared with HST) in the fractional uncertainty of the star formation rate to halo mass relation and the scales at which the LFs peak (i.e. turnover). Most parameters regulating the UV galaxy properties can be constrained at the level of $sim 10$% or better, if either (i) we are able to better characterize systematic lensing uncertainties than currently possible; or (ii) the intrinsic LFs peak at magnitudes brighter than $M_{rm UV} lesssim -13$. Otherwise, improvement over HST-based inference is modest. When combining with upcoming 21-cm observations, we are able to significantly mitigate degeneracies, and constrain all of our astrophysical parameters, even for our most pessimistic assumptions about upcoming JWST LFs. The 21-cm observations also result in an order of magnitude improvement in constraints on the EoR history.
The properties of the first galaxies, expected to drive the Cosmic Dawn (CD) and the Epoch of Reionization (EoR), are encoded in the 3D structure of the cosmic 21-cm signal. Parameter inference from upcoming 21-cm observations promises to revolutioni
Tomographic three-dimensional 21 cm images from the epoch of reionization contain a wealth of information about the reionization of the intergalactic medium by astrophysical sources. Conventional power spectrum analysis cannot exploit the full inform
Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology fro
We present here predictions for the spatial distribution of 21 cm brightness temperature fluctuations from high-dynamic-range simulations for AGN-dominated reionization histories that have been tested against available Lyman-alpha and CMB data. We mo
We present the first complete calculation of the history of the inhomogeneous 21-cm signal from neutral hydrogen during the era of the first stars. We use hybrid computational methods to capture the large-scale distribution of the first stars, whose