ﻻ يوجد ملخص باللغة العربية
The observed 21-cm signal from the epoch of reionization will be distorted along the line-of-sight by the peculiar velocities of matter particles. These redshift-space distortions will affect the contrast in the signal and will also make it anisotropic. This anisotropy contains information about the cross-correlation between the matter density field and the neutral hydrogen field, and could thus potentially be used to extract information about the sources of reionization. In this paper, we study a collection of simulated reionization scenarios assuming different models for the sources of reionization. We show that the 21-cm anisotropy is best measured by the quadrupole moment of the power spectrum. We find that, unless the properties of the reionization sources are extreme in some way, the quadrupole moment evolves very predictably as a function of global neutral fraction. This predictability implies that redshift-space distortions are not a very sensitive tool for distinguishing between reionization sources. However, the quadrupole moment can be used as a model-independent probe for constraining the reionization history. We show that such measurements can be done to some extent by first-generation instruments such as LOFAR, while the SKA should be able to measure the reionization history using the quadrupole moment of the power spectrum to great accuracy.
The bispectrum can quantify the non-Gussianity present in the redshifted 21-cm signal produced by the neutral hydrogen (HI) during the epoch of reionization (EoR). Motivated by this, we perform a comprehensive study of the EoR 21-cm bispectrum using
The 21-cm signal from the Cosmic Dawn (CD) is likely to contain large fluctuations, with the most extreme astrophysical models on the verge of being ruled out by observations from radio interferometers. It is therefore vital that we understand not on
The post-reionization ${rm HI}$ 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. (2016) have simulated the real space ${rm HI}$ 21-cm signal, and have model
The {rm HI} 21-cm intensity mapping signal experiences redshift space distortions due to the motion of the galaxies which contain the {rm HI} as well as the motions of the {rm HI} gas within the galaxies. A detailed modelling is essential if this sig
The relative velocity between baryons and dark matter in the early Universe can suppress the formation of small-scale baryonic structure and leave an imprint on the baryon acoustic oscillation (BAO) scale at low redshifts after reionization. This str