ﻻ يوجد ملخص باللغة العربية
In algebraic geometry, one often encounters the following problem: given a scheme X, find a proper birational morphism from Y to X where the geometry of Y is nicer than that of X. One version of this problem, first studied by Faltings, requires Y to be Cohen-Macaulay; in this case Y is called a Macaulayfication of X. In another variant, one requires Y to satisfy the Serre condition S_r. In this paper, the authors introduce generalized Serre conditions--these are local cohomology conditions which include S_r and the Cohen-Macaulay condition as special cases. To any generalized Serre condition S_rho, there exists an associated perverse t-structure on the derived category of coherent sheaves on a suitable scheme X. Under appropriate hypotheses, the authors characterize those schemes for which a canonical finite S_rho-ification exists in terms of the intermediate extension functor for the associated perversity. Similar results, including a universal property, are obtained for a more general morphism extension problem called S_rho-extension.
We introduce moduli spaces of stable perverse coherent systems on small crepant resolutions of Calabi-Yau 3-folds and consider their Donaldson-Thomas type counting invariants. The stability depends on the choice of a component (= a chamber) in the co
We consider categories of generalized perverse sheaves, with relaxed constructibility conditions, by means of the process of gluing $t$-structures and we exhibit explicit abelian categories defined in terms of standard sheaves categories which are eq
We conjecture that any perverse sheaf on a compact aspherical Kahler manifold has non-negative Euler characteristic. This extends the Singer-Hopf conjecture in the Kahler setting. We verify the stronger conjecture when the manifold X has non-positive
Another introduction to perverse sheaves with some exercises. Expanded version of five lectures at the 2015 PCMI.
We study a generalization of Serre--Tate theory of ordinary abelian varieties and their deformation spaces. This generalization deals with abelian varieties equipped with additional structures. The additional structures can be not only an action of a