ﻻ يوجد ملخص باللغة العربية
We consider categories of generalized perverse sheaves, with relaxed constructibility conditions, by means of the process of gluing $t$-structures and we exhibit explicit abelian categories defined in terms of standard sheaves categories which are equivalent to the former ones. In particular, we are able to realize perverse sheaves categories as non full abelian subcategories of the usual bounded complexes of sheaves categories. Our methods use induction on perversities. In this paper, we restrict ourselves to the two-strata case, but our results extend to the general case.
In algebraic geometry, one often encounters the following problem: given a scheme X, find a proper birational morphism from Y to X where the geometry of Y is nicer than that of X. One version of this problem, first studied by Faltings, requires Y to
We conjecture that any perverse sheaf on a compact aspherical Kahler manifold has non-negative Euler characteristic. This extends the Singer-Hopf conjecture in the Kahler setting. We verify the stronger conjecture when the manifold X has non-positive
We introduce moduli spaces of stable perverse coherent systems on small crepant resolutions of Calabi-Yau 3-folds and consider their Donaldson-Thomas type counting invariants. The stability depends on the choice of a component (= a chamber) in the co
Another introduction to perverse sheaves with some exercises. Expanded version of five lectures at the 2015 PCMI.
We construct a weak representation of the category of framed affine tangles on a disjoint union of triangulated categories ${mathcal D}_{2n}$. The categories we use are that of coherent sheaves on Springer fibers over a nilpotent element of $sl_{2n}$