ﻻ يوجد ملخص باللغة العربية
We study a generalization of Serre--Tate theory of ordinary abelian varieties and their deformation spaces. This generalization deals with abelian varieties equipped with additional structures. The additional structures can be not only an action of a semisimple algebra and a polarization, but more generally the data given by some ``crystalline Hodge cycles (a $p$-adic version of a Hodge cycle in the sense of motives). Compared to Serre--Tate ordinary theory, new phenomena appear in this generalized context. We give an application of this theory to the existence of ``good integral models of those Shimura varieties whose adjoints are products of simple, adjoint Shimura varieties of $D_l^{bf H}$ type with $lge 4$.
In algebraic geometry, one often encounters the following problem: given a scheme X, find a proper birational morphism from Y to X where the geometry of Y is nicer than that of X. One version of this problem, first studied by Faltings, requires Y to
Refining a theorem of Zarhin, we prove that given a $g$-dimensional abelian variety $X$ and an endomorphism $u$ of $X$, there exists a matrix $A in operatorname{M}_{2g}(mathbb{Z})$ such that each Tate module $T_ell X$ has a $mathbb{Z}_ell$-basis on which the action of $u$ is given by $A$.
Tates central extension originates from 1968 and has since found many applications to curves. In the 80s Beilinson found an n-dimensional generalization: cubically decomposed algebras, based on ideals of bounded and discrete operators in ind-pro limi
We develop an analogue of Eisenbud-Floystad-Schreyers Tate resolutions for toric varieties. Our construction, which is given by a noncommutative analogue of a Fourier-Mukai transform, works quite generally and provides a new perspective on the relati
In this paper we study various aspects of the Ekedahl-Serre problem. We formulate questions of Ekedahl-Serre type and Coleman-Oort type for general weakly special subvarieties in the Siegel moduli space, propose a conjecture relating these two questi