ﻻ يوجد ملخص باللغة العربية
We use the nested loop approach to investigate loop models on random planar maps where the domains delimited by the loops are given two alternating colors, which can be assigned different local weights, hence allowing for an explicit Z_2 domain symmetry breaking. Each loop receives a non local weight n, as well as a local bending energy which controls loop turns. By a standard cluster construction that we review, the Q = n^2 Potts model on general random maps is mapped to a particular instance of this problem with domain-non-symmetric weights. We derive in full generality a set of coupled functional relations for a pair of generating series which encode the enumeration of loop configurations on maps with a boundary of a given color, and solve it by extending well-known complex analytic techniques. In the case where loops are fully-packed, we analyze in details the phase diagram of the model and derive exact equations for the position of its non-generic critical points. In particular, we underline that the critical Potts model on general random maps is not self-dual whenever Q eq 1. In a model with domain-symmetric weights, we also show the possibility of a spontaneous domain symmetry breaking driven by the bending energy.
We continue our investigation of the nested loop approach to the O(n) model on random maps, by extending it to the case where loops may visit faces of arbitrary degree. This allows to express the partition function of the O(n) loop model as a special
We consider the O(n) loop model on tetravalent maps and show how to rephrase it into a model of bipartite maps without loops. This follows from a combinatorial decomposition that consists in cutting the O(n) model configurations along their loops so
We compute the partition function of the $q$-states Potts model on a random planar lattice with $pleq q$ allowed, equally weighted colours on a connected boundary. To this end, we employ its matrix model representation in the planar limit, generalisi
We extend a recent analysis of the $q$-states Potts model on an ensemble of random planar graphs with $pleqslant q$ allowed, equally weighted, spins on a connected boundary. In this paper we explore the $(q<4,pleqslant q)$ parameter space of finite-s
We compute the generating functions of a O(n) model (loop gas model) on a random lattice of any topology. On the disc and the cylinder, they were already known, and here we compute all the other topologies. We find that the generating functions (and