ﻻ يوجد ملخص باللغة العربية
High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H2O and D2O high harmonic yields to isolate the characteristic nuclear motion of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by simulating strong field ionization and high harmonic generation from the water isotopes using the time-dependent Schrodinger equation. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules.
We investigate the role of nuclear motion and strong-field-induced electronic couplings during the double ionization of deuterated water using momentum-resolved coincidence spectroscopy. By examining the three-body dicationic dissociation channel, D$
We review the main aspects of multiple photoionization processes in atoms exposed to intense, short wavelength radiation. The main focus is the theoretical framework for the description of such processes as well as the conditions under which direct m
Polyatomic molecules in strong laser fields can undergo substantial nuclear motion within tens of femtoseconds. Ion imaging methods based on dissociation or Coulomb explosion therefore have difficulty faithfully recording the geometry dependence of t
Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magne
When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum $p_{gamma}=E_{gamma}/c$ to the electron and its parent ion. Even after 30 years of studying strong-field ion