ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Field Ionization of Water: Nuclear Dynamics Revealed by Varying the Pulse Duration

115   0   0.0 ( 0 )
 نشر من قبل Andrew Howard
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polyatomic molecules in strong laser fields can undergo substantial nuclear motion within tens of femtoseconds. Ion imaging methods based on dissociation or Coulomb explosion therefore have difficulty faithfully recording the geometry dependence of the field ionization that initiates the dissociation process. Here we compare the strong-field double ionization and subsequent dissociation of water (both H$_2$O and D$_2$O) in 10-fs and 40-fs 800-nm laser pulses. We find that 10-fs pulses turn off before substantial internuclear motion occurs, whereas rapid internuclear motion can take place during the double ionization process for 40-fs pulses. The short-pulse measurements are consistent with a simple tunnel ionization picture, whose predictions help interpret the motion observed in the long-pulse measurements.



قيم البحث

اقرأ أيضاً

114 - Chuan Cheng 2021
We investigate the role of nuclear motion and strong-field-induced electronic couplings during the double ionization of deuterated water using momentum-resolved coincidence spectroscopy. By examining the three-body dicationic dissociation channel, D$ ^{+}$/D$^{+}$/O, for both few- and multi-cycle laser pulses, strong evidence for intra-pulse dynamics is observed. The extracted angle- and energy-resolved double ionization yields are compared to classical trajectory simulations of the dissociation dynamics occurring from different electronic states of the dication. In contrast with measurements of single photon double ionization, pronounced departure from the expectations for vertical ionization is observed, even for pulses as short as 10~fs in duration. We outline numerous mechanisms by which the strong laser field can modify the nuclear wavefunction en-route to final states of the dication where molecular fragmentation occurs. Specifically, we consider the possibility of a coordinate-dependence to the strong-field ionization rate, intermediate nuclear motion in monocation states prior to double ionization, and near-resonant laser-induced dipole couplings in the ion. These results highlight the fact that, for small and light molecules such as D$_2$O, a vertical-transition treatment of the ionization dynamics is not sufficient to reproduce the features seen experimentally in the strong field coincidence double-ionization data.
285 - Phay J. Ho , J. H. Eberly 2005
We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities $10^{14}-10^{16} W/cm^2$ for the laser wavel ength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and promotes double ionization production in few-cycle pulses. In addition, the purely classical ensemble calculation predicts an exponentially decreasing recollision rate with each subsequent half cycle. We confirm the exponential behavior by trajectory back-analysis.
The combination of photoelectron spectroscopy and ultrafast light sources is on track to set new standards for detailed interrogation of dynamics and reactivity of molecules. A crucial prerequisite for further progress is the ability to not only dete ct the electron kinetic energy, as done in traditional photoelectron spectroscopy, but also the photoelectron angular distributions (PADs) in the molecular frame. Here carbonylsulfide (OCS) and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized, 30 femtosecond laser pulses. For 1-dimensionally oriented OCS the molecular frame PADs exhibit pronounced anisotropies, perpendicular to the fixed permanent dipole moment, that are absent in PADs from randomly oriented molecules. For 3-dimensionally oriented benzonitrile additional striking structures appear due to suppression of electron emission in nodal planes of the fixed electronic orbitals. Our theoretical analysis, relying on tunneling ionization theory, shows that the PADs reflect nodal planes, permanent dipole moments and polarizabilities of both the neutral molecule and its cation. The calculated results are exponentially sensitive to changes in these molecular properties thereby pointing to exciting opportunities for time-resolved probing of valence electrons dynamics by intense circularly polarized pulses. Molecular frame PADs from oriented molecules will prove important in other contexts notably in emerging free-electron-laser studies where localized inner shell electrons are knocked off by x-ray pulses.
High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H2O and D2O high harmonic yields to isolate the characteristic nuclear motio n of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by simulating strong field ionization and high harmonic generation from the water isotopes using the time-dependent Schrodinger equation. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules.
D$_2$ molecules, excited by linearly cross-polarized femtosecond extreme ultraviolet (XUV) and near-infrared (NIR) light pulses, reveal highly structured D$^+$ ion fragment momenta and angular distributions that originate from two different 4-step di ssociative ionization pathways after four photon absorption (1 XUV + 3 NIR). We show that, even for very low dissociation kinetic energy release $le$~240~meV, specific electronic excitation pathways can be identified and isolated in the final ion momentum distributions. With the aid of {it ab initio} electronic structure and time-dependent Schrodinger equation calculations, angular momentum, energy, and parity conservation are used to identify the excited neutral molecular states and molecular orientations relative to the polarization vectors in these different photoexcitation and dissociation sequences of the neutral D$_2$ molecule and its D$_2^+$ cation. In one sequential photodissociation pathway, molecules aligned along either of the two light polarization vectors are excluded, while another pathway selects molecules aligned parallel to the light propagation direction. The evolution of the nuclear wave packet on the intermediate Bstate electronic state of the neutral D$_2$ molecule is also probed in real time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا