ترغب بنشر مسار تعليمي؟ اضغط هنا

A template of atmospheric O2 circularly polarized emission for CMB experiments

196   0   0.0 ( 0 )
 نشر من قبل Mario Zannoni
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the circularly polarized signal from atmospheric molecular oxygen. Polarization of O2 rotational lines is caused by Zeeman effect in the Earth magnetic field. We evaluate the circularly polarized emission for various sites suitable for CMB measurements: South Pole and Dome C (Antarctica), Atacama (Chile) and Testa Grigia (Italy). An analysis of the polarized signal is presented and discussed in the framework of future CMB polarization experiments. We find a typical circularly polarized signal (V Stokes parameter) of ~ 50 - 300 {mu}K at 90 GHz looking at the zenith. Among the other sites Atacama shows the lower polarized signal at the zenith. We present maps of this signal for the various sites and show typical elevation and azimuth scans. We find that Dome C presents the lowest gradient in polarized temperature: ~ 0.3 {mu}K/circ at 90 GHz. We also study the frequency bands of observation: around { u} simeq 100 GHz and { u} simeq 160 GHz we find the best conditions because the polarized signal vanishes. Finally we evaluate the accuracy of the templates and the signal variability in relation with the knowledge and the variability of the Earth magnetic field and the atmospheric parameters.



قيم البحث

اقرأ أيضاً

124 - J. Errard , P.A.R. Ade , Y. Akiba 2015
Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and tem poral correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.
Future Cosmic Microwave Background (CMB) satellite missions aim at using the B-mode polarisation signal to measure the tensor-to-scalar ratio $r$ with a sensitivity $sigma(r)$ of the order of $leq 10^{-3}$. Small uncertainties in the characterisation of instrument properties such as the spectral filters can lead to a leakage of the intensity signal to polarisation and can possibly bias any measurement of a primordial signal. In this paper we discuss methods for avoiding and correcting for the intensity to polarisation leakage due to bandpass mismatch among detector sets. We develop a template fitting map-maker to obtain an unbiased estimate of the leakage signal and subtract it out of the total signal. Using simulations we show how such a method can reduce the bias on the observed B-mode signal by up to $3$ orders of magnitude in power.
Missions such as WMAP or Planck measure full-sky fluctuations of the cosmic microwave background and foregrounds, among which bright compact source emissions cover a significant fraction of the sky. To accurately estimate the diffuse components, the point-source emissions need to be separated from the data, which requires a dedicated processing. We propose a new technique to estimate the flux of the brightest point sources using a morphological separation approach: point sources with known support and shape are separated from diffuse emissions that are assumed to be sparse in the spherical harmonic domain. This approach is compared on both WMAP simulations and data with the standard local chi2 minimization, modelling the background as a low-order polynomial. The proposed approach generally leads to 1) lower biases in flux recovery, 2) an improved root mean-square error of up to 35% and 3) more robustness to background fluctuations at the scale of the source. The WMAP 9-year point-source-subtracted maps are available online.
We report detection of strong circularly polarized emission from the transient bursting source GCRT J1745-3009 based on new analysis of 325 MHz GMRT observations conducted on 28 September 2003. We place 8 Solar radius as the upper limit on the size o f the emission region. The implied high brightness temperature required for an object beyond 1 pc and the high fraction of circular polarization firmly establish the emission as coherent. Electron cyclotron or plasma emission from a highly subsolar magnetically dominated dwarf located less than 4 kpc away could have given rise to the GCRT radio emission.
Current-generation low frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background, aim to generate power spectra of the brightness-temperature contrast of neutral hydrogen in primordial intergalactic medi um. Two-dimensional power spectra (power in Fourier modes parallel and perpendicular to the line of sight) formed from interferometric visibilities have been shown to delineate a boundary between spectrally-smooth foregrounds (known as the wedge) and spectrally-structured 21 cm background emission (the EoR-window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work, we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility, to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا