ﻻ يوجد ملخص باللغة العربية
Current-generation low frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background, aim to generate power spectra of the brightness-temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional power spectra (power in Fourier modes parallel and perpendicular to the line of sight) formed from interferometric visibilities have been shown to delineate a boundary between spectrally-smooth foregrounds (known as the wedge) and spectrally-structured 21 cm background emission (the EoR-window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work, we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility, to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.
A critical challenge in the observation of the redshifted 21-cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as
Detection of 21~cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum techniq
We briefly review our work about the polarized foreground contamination of the Cosmic Microwave Background maps. We start by summarizing the main properties of the polarized cosmological signal, resulting in electric (E) and magnetic (B) components o
The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western
The Murchison Widefield Array (MWA) has collected hundreds of hours of Epoch of Reionization (EoR) data and now faces the challenge of overcoming foreground and systematic contamination to reduce the data to a cosmological measurement. We introduce s