ﻻ يوجد ملخص باللغة العربية
Future Cosmic Microwave Background (CMB) satellite missions aim at using the B-mode polarisation signal to measure the tensor-to-scalar ratio $r$ with a sensitivity $sigma(r)$ of the order of $leq 10^{-3}$. Small uncertainties in the characterisation of instrument properties such as the spectral filters can lead to a leakage of the intensity signal to polarisation and can possibly bias any measurement of a primordial signal. In this paper we discuss methods for avoiding and correcting for the intensity to polarisation leakage due to bandpass mismatch among detector sets. We develop a template fitting map-maker to obtain an unbiased estimate of the leakage signal and subtract it out of the total signal. Using simulations we show how such a method can reduce the bias on the observed B-mode signal by up to $3$ orders of magnitude in power.
Future Cosmic Microwave Background (CMB) satellite missions aim to use the $B$ mode polarization to measure the tensor-to-scalar ratio $r$ with a sensitivity of about $10^{-3}$. Achieving this goal will not only require sufficient detector array sens
Current and future Cosmic Microwave Background (CMB) Radiation experiments are targeting the polarized $B$-mode signal. The small amplitude of this signal makes a successful measurement challenging for current technologies. Therefore, very accurate s
We compute the circularly polarized signal from atmospheric molecular oxygen. Polarization of O2 rotational lines is caused by Zeeman effect in the Earth magnetic field. We evaluate the circularly polarized emission for various sites suitable for CMB
LiteBIRD has been selected as JAXAs strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) an
Missions such as WMAP or Planck measure full-sky fluctuations of the cosmic microwave background and foregrounds, among which bright compact source emissions cover a significant fraction of the sky. To accurately estimate the diffuse components, the