ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandpass mismatch error for satellite CMB experiments II: Correcting for the spurious signal

133   0   0.0 ( 0 )
 نشر من قبل Ranajoy Banerji
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future Cosmic Microwave Background (CMB) satellite missions aim at using the B-mode polarisation signal to measure the tensor-to-scalar ratio $r$ with a sensitivity $sigma(r)$ of the order of $leq 10^{-3}$. Small uncertainties in the characterisation of instrument properties such as the spectral filters can lead to a leakage of the intensity signal to polarisation and can possibly bias any measurement of a primordial signal. In this paper we discuss methods for avoiding and correcting for the intensity to polarisation leakage due to bandpass mismatch among detector sets. We develop a template fitting map-maker to obtain an unbiased estimate of the leakage signal and subtract it out of the total signal. Using simulations we show how such a method can reduce the bias on the observed B-mode signal by up to $3$ orders of magnitude in power.

قيم البحث

اقرأ أيضاً

Future Cosmic Microwave Background (CMB) satellite missions aim to use the $B$ mode polarization to measure the tensor-to-scalar ratio $r$ with a sensitivity of about $10^{-3}$. Achieving this goal will not only require sufficient detector array sens itivity but also unprecedented control of all systematic errors inherent to CMB polarization measurements. Since polarization measurements derive from differences between observations at different times and from different sensors, detector response mismatches introduce leakages from intensity to polarization and thus lead to a spurious $B$ mode signal. Because the expected primordial $B$ mode polarization signal is dwarfed by the known unpolarized intensity signal, such leakages could contribute substantially to the final error budget for measuring $r.$ Using simulations we estimate the magnitude and angular spectrum of the spurious $B$ mode signal resulting from bandpass mismatch between different detectors. It is assumed here that the detectors are calibrated, for example using the CMB dipole, so that their sensitivity to the primordial CMB signal has been perfectly matched. Consequently the mismatch in the frequency bandpass shape between detectors introduces difference in the relative calibration of galactic emission components. We simulate using a range of scanning patterns being considered for future satellite missions. We find that the spurious contribution to $r$ from reionization bump on large angular scales ($ell < 10$) is $approx 10^{-3}$ assuming large detector arrays and 20 percent of the sky masked. We show how the amplitude of the leakage depends on the angular coverage per pixels that results from the scan pattern.
Current and future Cosmic Microwave Background (CMB) Radiation experiments are targeting the polarized $B$-mode signal. The small amplitude of this signal makes a successful measurement challenging for current technologies. Therefore, very accurate s tudies to mitigate and control possible systematic effects are vital to achieve a successful observation. An additional challenge is coming from the presence of polarized Galactic foreground signals that contaminate the CMB signal. When they are combined, the foreground signals dominate the polarized CMB signal at almost every relevant frequency. Future experiments, like the LiteBIRD space-borne mission, aim at measuring the CMB $B$-mode signal with high accuracy to measure the tensor-to-scalar ratio $r$ at the $10^{-3}$ level. We present a method to study the photometric calibration requirement needed to minimize the leakage of polarized Galactic foreground signals into CMB polarization maps for a multi-frequency CMB experiment. We applied this method to the LiteBIRD case, and we found precision requirements for the photometric calibration in the range $sim10^{-4}-2.5times10^{-3}$ depending on the frequency band. Under the assumption that the detectors are uncorrelated, we found requirements per detector in the range $sim0.18times10^{-2}-2.0times10^{-2}$. Finally, we relate the calibration requirements to the band-pass resolution to define constraints for a few representative band-pass responses: $Delta usim0.2-2$ GHz.
We compute the circularly polarized signal from atmospheric molecular oxygen. Polarization of O2 rotational lines is caused by Zeeman effect in the Earth magnetic field. We evaluate the circularly polarized emission for various sites suitable for CMB measurements: South Pole and Dome C (Antarctica), Atacama (Chile) and Testa Grigia (Italy). An analysis of the polarized signal is presented and discussed in the framework of future CMB polarization experiments. We find a typical circularly polarized signal (V Stokes parameter) of ~ 50 - 300 {mu}K at 90 GHz looking at the zenith. Among the other sites Atacama shows the lower polarized signal at the zenith. We present maps of this signal for the various sites and show typical elevation and azimuth scans. We find that Dome C presents the lowest gradient in polarized temperature: ~ 0.3 {mu}K/circ at 90 GHz. We also study the frequency bands of observation: around { u} simeq 100 GHz and { u} simeq 160 GHz we find the best conditions because the polarized signal vanishes. Finally we evaluate the accuracy of the templates and the signal variability in relation with the knowledge and the variability of the Earth magnetic field and the atmospheric parameters.
LiteBIRD has been selected as JAXAs strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) an d broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRDs onboard telescopes. It has a wide field-of-view ($18^circ times 9^circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
Missions such as WMAP or Planck measure full-sky fluctuations of the cosmic microwave background and foregrounds, among which bright compact source emissions cover a significant fraction of the sky. To accurately estimate the diffuse components, the point-source emissions need to be separated from the data, which requires a dedicated processing. We propose a new technique to estimate the flux of the brightest point sources using a morphological separation approach: point sources with known support and shape are separated from diffuse emissions that are assumed to be sparse in the spherical harmonic domain. This approach is compared on both WMAP simulations and data with the standard local chi2 minimization, modelling the background as a low-order polynomial. The proposed approach generally leads to 1) lower biases in flux recovery, 2) an improved root mean-square error of up to 35% and 3) more robustness to background fluctuations at the scale of the source. The WMAP 9-year point-source-subtracted maps are available online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا