ترغب بنشر مسار تعليمي؟ اضغط هنا

Full coherent control of nuclear spins in an optically pumped single quantum dot

190   0   0.0 ( 0 )
 نشر من قبل Maxim Makhonin N
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of QD-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond time-scale of Overhauser fields of the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using full coherent control of an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of short radio-frequency (rf) pulses. These results open the way to a new class of experiments using rf techniques to achieve highly-correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.

قيم البحث

اقرأ أيضاً

We report optically detected nuclear magnetic resonance (ODNMR) measurements on small ensembles of nuclear spins in single GaAs quantum dots. Using ODNMR we make direct measurements of the inhomogeneous Knight field from a photo-excited electron whic h acts on the nuclei in the dot. The resulting shifts of the NMR peak can be optically controlled by varying the electron occupancy and its spin orientation, and lead to strongly asymmetric lineshapes at high optical excitation. The all-optical control of the NMR lineshape will enable position-selective control of small groups of nuclear spins in a dot. Our calculations also show that the asymmetric NMR peak lineshapes can provide information on the volume of the electron wave-function, and may be used for measurements of non-uniform distributions of atoms in nano-structures.
Using a conventional Hall-bar geometry with a micro-metal strip on top of the surface, we demonstrate an electrical coherent control of nuclear spins in an AlGaAs/GaAs semiconductor heterostructure. A breakdown of integer quantum Hall (QH) effect is utilized to dynamically polarize nuclear spins. By applying a pulse rf magnetic field with the metal strip, the quantum state of the nuclear spins shows Rabi oscillations, which is detected by measuring longitudinal voltage of the QH conductor.
312 - F. Cadiz , A. Djeffal , D. Lagarde 2018
The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zer o applied magnetic field. The injection of spin polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several $mu$eV at zero magnetic field for the positively charged exciton (trion X$^+$) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.
190 - S. Spatzek 2010
Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins withi n an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with microeV-strength.
Coherent rotations of single spin-based qubits may be accomplished electrically at fixed Zeeman energy with a qubit defined solely within a single electrostatically-defined quantum dot; the $g$-factor and the external magnetic field are kept constant . All that is required to be varied are the voltages on metallic gates which effectively change the shape of the elliptic quantum dot. The pseudospin-1/2 qubit is constructed from the two-dimensional $S=1/2$, $S_z=-1/2$ subspace of three interacting electrons in a two-dimensional potential well. Rotations are created by altering the direction of the pseudomagnetic field through changes in the shape of the confinement potential. By deriving an exact analytic solution to the long-range Coulomb interaction matrix elements, we calculate explicitly the range of magnitudes and directions the pseudomagnetic field can take. Numerical estimates are given for {GaAs}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا